首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TheEscherichia coli genesdicF anddicB encode division inhibitors, which prevent the synthesis and activity, respectively, of the essential division protein FtsZ. A mutation at the C-terminal end of the RNA polymeraseβ subunit renders cells resistant to both inhibitors. In the mutant strain the level of theftsZ gene product is higher than in the wild type. Disruption ofrpoS, which encodes the stationary phase sigma factor σS, lowers FtsZ protein levels in the mutant, and partially restores sensitivity to the inhibitors.  相似文献   

2.
3.
The Fad12 mutant of Synechocystis sp. PCC 6803 has a defect in the desA gene for Δ12 acyl-lipid desaturase. We identified a change in the nucleotide sequence of the structural gene for the desaturase, in which a leucine codon has been converted to a stop codon. Western blot analysis revealed that the Δ12 acyl-lipid desaturase was localized in both plasma membranes and thylakoid membranes of wild-type cells but was absent from both types of membrane in Fad12 cells. These findings suggest that the desaturation of fatty acids takes place in both types of membrane in Synechocystis sp. PCC 6803. The mutation in the Δ12 desaturase did not affect the lipid composition of thylakoid and plasma membranes, but it changed the fatty acid composition of lipids in similar ways in both types of membrane.  相似文献   

4.
5.
6.
Summary We have isolated Escherichia coli F mutants which, when mated with either Hfr or F, can form stable mating aggregates well but produce transconjugants with reduced frequencies. Selection procedure and other tests rule out the possibility that they are Rec strains. These mutants can be classified into two types: type I mutants can induce conjugal DNA replication in the donor, yet form transconjugants poorly; whereas, type II mutants induce conjugal DNA replication with poor efficiencies in the donor. Further tests indicate that type I mutants are very sensitive to lethal zygosis and their membranes, both inner and outer, show alterations in protein composition, whereas type II mutants are insensitive to lethal zygosis, and have an obvious alteration in the protein composition of their outer membrane. These results suggest that type I is defective in transconjugant formation primarily due to a change in the inner membrane, whereas type II is defective in generating a mating signal, which induces donor conjugal DNA replication, due to an alteration in the outer membrane.  相似文献   

7.
Summary The recombinant forming ability of recB or recC strains of E. coli K12 is almost totally recovered in merozygotes which are heterozygous for a genetic locus denoted rac which is located five minutes clockwise from trp on the genetic map. This transient recovery phenomenon only occurs when the donor strain is rac + (wild type) and the recipient strain is rac -. The recombinants derived from such crosses all have the normal phenotype characteristic of recB (or recC ) strains, and they are almost always rac -. The results imply that the rac + locus (or loci) is zygotically expressed and excised from the chromosome in a manner which is analogous to the zygotic induction of a prophage.  相似文献   

8.
An Arabidopsis thaliana cDNA library was used to complement Saccharomyces cerevisiae pyrimidine auxotrophic mutants. Mutants in all but one (carbamylphosphate synthetase) of the six steps in the de novo pyrimidine biosynthetic pathway could be complemented. We report here the cloning, sequencing and computer analysis of two cDNAs encoding the aspartate transcarbamylase (ATCase; EC 2.1.3.2) and orotate phosphoribosyltransferase-orotidine-5-phosphate decarboxylase (OPRTase-OMP-decase; EC 2.4.2.10, EC 4.1.1.23) enzymes. These results confirm the presence in A. thaliana of a bifunctional gene whose product catalyses the last two steps of the pyrimidine biosynthetic pathway, as previously suggested by biochemical studies. The ATCase encoding cDNA sequence (PYRB gene) shows an open reading frame (ORF) of 1173 by coding for 390 amino acids. The cDNA encoding OPRTase-OMPdecase (PYRE-F gene) shows an ORF of 1431 by coding for 476 amino acids. Computer analysis of the deduced amino acid sequences of both cDNAs shows the expected high similarity with the ATCase, ornithine transcarbamylase (OTCase; EC 2.1.3.3), OPRTase and OMPdecase families. This heterospecific cloning approach increases our understanding of the genetic organization and interspecific functional conservation of the pyrimidine biosynthetic pathway and underlines its usefulness as a model for evolutionary studies.  相似文献   

9.
10.
Flagellation and β-galactosidase activity were repressed in electron transport-deficient mutants of Escherichia coli K-12. The repressed state was alleviated upon restoring respiration capacity or in the presence of added 3′,5′-cyclic AMP. The repressed/derepressed states observed with varying respiration rates were due to modulation of the intracellular 3′,5′-cyclic AMP content effected by respective changes in the activity of adenylate cyclase as a function of respiration rate.  相似文献   

11.
Summary Bacteria with specific temperature sensitive lethal mutations in the gene for the subunit of RNA polymerase synthesize both the and subunits at a several fold higher rate at 42°C than wildtype cells relative to total protein. Synthesis of the and subunits proceeds at essentially the wild-type rates under these conditions. In contrast, a mutant with a temperature sensitive lethal mutation in the subunit gene synthesizes and at 42°C at slightly lower rates than wild-type, while and synthesis is not significantly altered. In all of the mutants at 42°C, newly synthesized subunits are stable, while the , and subunits are rapidly degraded. The apparent uncoupling of from subunit synthesis seen in the mutants at 42°C might suggest that the synthesis of these subunits is at least in part controlled by different mechanisms.  相似文献   

12.
GcvB is a non-coding RNA that regulates oppA mRNA in different bacterial species by binding a GcvB GU-rich region named R1 to oppA mRNA. A secondary putative interaction site (PS1) was identified in this study that is able to form a second nearly perfect 10 base-pair duplex between these two RNAs in Escherichia coli. In this work, we have studied whether the formation of a second interaction site could help stabilize the previously reported GcvB/oppA complex. Several mutations and the full deletion of PS1 were engineered. None of these modifications affected the ability of GcvB to control OppA expression. Therefore the second, putative, interaction site appears to be unnecessary for the regulatory function of GcvB with regard to its oppA target mRNA.  相似文献   

13.
Summary Northern blot analysis of glucose-grown and starch-grown mycelia of Aspergillus oryzae R11340 was conducted using the cloned Taka-amylase A (TAA) gene as a probe. The amount of mRNA homologous to the TAA gene was increased when this fungus was grown with starch as a sole carbon source. In order to analyze the induction mechanism, we inserted the Escherichia coli uidA gene encoding -glucuronidase (GUS) downstream of the TAA promoter and introduced the resultant fusion gene into the A. oryzae genome. Production of a functional GUS protein was induced by starch, but not by glucose. When the effects of various sugars on expression of the fusion gene were examined, the results suggested that the expression of the fusion gene was under control of the TAA gene promoter.  相似文献   

14.
15.
16.
17.
18.
Mutations in the voltage-gated potassium channel Kv7.4 (encoded as KCNQ4) lead to the early onset of non-syndromic hearing loss, which is significant during language acquisition. The deletion of the S269 pore residue (genetic Δ mutation) in Kv7.4 has been reported to be associated with hearing loss. So far, there is no mechanistic understanding of how this mutation modulates channel function. To understand the role of S269 in ion conduction, we performed molecular dynamics simulations for both wild type and ΔS269 mutant channels. Simulations indicate that the ΔS269 mutation suppresses the fluctuations in the neighboring Y269 residue and thereby consolidates the ring formed by I307 and F310 residues in the adjacent S6 helixes in the cavity region. We show that the long side chains of I307 near the entrance to the cavity form a hydrophobic gate. Comparison of the free energy profiles of a cavity ion in Kv7.4 and Kv7.4[ΔS269] channels reveals a sizable energy barrier in the latter case, which suppresses ion conduction. Thus the simulation studies reveal that the hydrophobic gate resulting from the ΔS269 mutation appears to be responsible for sensorineural hearing loss.  相似文献   

19.
B.J. Wallace  I.G. Young 《BBA》1977,461(1):84-100
A ubiA? menA? double quinone mutant of Escherichia coli K12 was constructed together with other isogenic strains lacking either ubiquinone or menaquinone. These strains were used to study the role of quinones in electron transport to oxygen and nitrate. Each of the four oxidases examined (NADH, d-lactate, α-glycerophosphate and succinate) required a quinone for activity. Ubiquinone was active in each oxidase system while menaquinone gave full activity in α-glycerophosphate oxidase, partial activity in d-lactate oxidase but was inactive in NADH and succinate oxidation. The aerobic growth rates, growth yields and products of glucose metabolism of the quinone-deficient strains were also examined. The growth rate and growth yield of the ubi+ menA? strain was the same as the wild-type strain, whereas the ubiA? men+ strain grew more slowly on glucose, had a lower growth yield (30% of wild type) and accumulated relatively large quantities of acetate and lactate. The growth of the ubiA? menA? strain was even more severely affected than that of the ubiA? men+ strain.Electron transport from formate, d-lactate, α-glycerophosphate and NADH to nitrate was also highly dependent on the presence of a quinone. Either ubiquinone or menaquinone was active in electron transport from formate and the activity of the quinones in electron transport from the other substrates was the same as for the oxidase systems. In contrast, quinones were not obligatory carriers in the anaerobic formate hydrogenlyase system. It is concluded that the quinones serve to link the various dehydrogenases with the terminal electron transport systems to oxygen and nitrate and that the dehydrogenases possess a degree of selectivity with respect to the quinone acceptors.  相似文献   

20.
Summary DNA base sequence changes induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis have been determined for the Escherichia coli gpt gene stably incorporated in a chromosome of Chinese hamster ovary cells and in the chromosome of both growing and starving E. coli cells, instead of on a plasmid as in most previous studies. In the three cases, nearly all mutations were G: C to A: T transitions, with a 2-to 4-fold higher mutation rate, compared to other sites, at guanines flanked on the 5 side by another guanine. Mutagenic hot spots in these experiments were less prominent than in published results for MNNG mutagenesis of gpt and of other genes. A suggested explanation involves repair of O6meG. At low levels of mutagenic products, most are repaired and even small differences in the repair rates leads to large differences in the relative amounts of residual O6meG at various sites; in contrast, at high levels of mutagenic products there is little effect of repair on the distribution.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - O6meG O6-methylguanine - N7meG N7-methylguanine - CHO Chinese hamster ovary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号