首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the therapeutic concentrations of benzylpenicillin on potassium release and osmotic resistance of the red blood cells in healthy children was investigated potentiometrically with the use of a K+-selective electrode. In a concentration of 0.66 mM (370 units/ml) benzylpenicillin increased the total content of potassium in the cells and their resistance to osmotic lysis and lowered the rate of K+ release induced by valinomycin. The membrane stabilizing effect of benzylpenicillin observed in these studies could to some extent stipulate its nonspecific antiinflammatory effect. In a concentration of 1.32 mM (740 units/ml) it had no significant effect on the indices studied. Under the effect of the maximum concentrations of the antibiotic (3.3 mM) the signs of lowered stability of the red blood cell membranes were observed, i.e. an increased rate of the valinomycin induced release of K+ and a tendency for the decreasing of the osmotic resistance.  相似文献   

2.
The aim of our study was to search for abnormalities of sodium and potassium transport in erythrocytes of male Wistar rats subjected to chronic L-NAME treatment (40 mg/kg/day) for 4 weeks either from weaning (4-week-old) or in adulthood (12-week-old). Sodium content, Na(+),K(+)-pump and Na(+),K(+)-cotransport activity, cation leaks as well as membrane cholesterol and phospholipid contents were determined in fresh erythrocytes. Chronic inhibition of NO synthase elicited similar blood pressure rise in both age groups which did not differ in the degree of NO synthase inhibition. No significant ion transport abnormalities were disclosed in erythrocytes of young NO-deficient rats, whereas erythrocyte Na(+) content, outward Na(+),K(+)-cotransport and inward Na(+) leak were significantly reduced in adult hypertensive animals compared to age-matched controls. It should be noted that the erythrocytes of adult control rats were characterized by higher activity of Na(+),K(+)-pump and Na(+),K(+)-cotransport, increased Na(+) and Rb(+) leaks and elevated membrane cholesterol content compared to those of young normotensive controls. Increased Na(+) leak and elevated membrane cholesterol content but reduced membrane phospholipid content were revealed in erythrocytes of adult hypertensive rats when compared to young hypertensive rats. It can be concluded that young and adult Wistar rats did not differ in the extent of NO synthase inhibition and blood pressure rise elicited by chronic L-NAME treatment. Our results exclude the important participation of classical sodium transport abnormalities in the pathogenesis of this NO-deficient form of experimental hypertension.  相似文献   

3.
To assess the possibility of stimulating Ca2+-activated K+ channels, marine fish erythrocytes were incubated at 20-22 degrees C in saline containing a Ca2+-ATPase inhibitor (orthovanadate), a Ca2+ ionophore (A23187), propranolol or Pb2+. Incubation of the cells for up to 2 h under control conditions or in the presence of 5 mM NH4VO3 and 1 mM Ca2+ did not affect the intracellular K+ and Na+ concentrations. About 50% cellular K+ was lost from erythrocytes incubated in the presence of 0.01 mM A23187, 1 mM EGTA and 0.4-1.0 mM Ca2+. There was a significant loss of cellular K+ after the addition of 0.05-0.2 mM propranolol to the incubation medium. The stimulatory effect of propranolol on the K+ efflux was independent of external Ca2+. Blockers of Ca2+ transport, verapamil and Co2+, caused only a small decrease in the K+ loss induced by propranolol. The treatment of erythrocytes with 1-2 microM Pb2+ led to a minor K+ loss, but at a Pb2+ concentration of 20-50 microM, about 70% cellular K+ was lost. The K+ efflux induced by propranolol or Pb2+ was completely blocked by 1 mM quinine. The induced K+ loss from the erythrocytes was accompanied by a slight increase in the intracellular Na+ concentration. These data indicate the possibility of inducing Ca2+- and Pb2+-activated potassium channels in erythrocytes of S. porcus. A distinctive feature of the cells is a high sensitivity to propranolol, which activates K+ channels in the absence of external Ca2+.  相似文献   

4.
Release of lactate was studied during in vitro incubations with isolated fat cells. Lactate release increased (approximately 3-fold) with increasing medium glucose concentration (from 3 to 12 mM) in both large and small fat cells. Large fat cells from older, fatter rats, however, released 3-4 times more lactate per cell than small fat cells from young rats when incubated with 3, 6 or 12 mM glucose. Insulin and epinephrine produced a marked stimulation of lactate release in small fat cells, but these hormones had no effect in large fat cells. Lactate accounted for only 10-15% of the glucose metabolized by small fat cells under all incubation conditions but was nearly 40% of glucose utilized by large fat cells at glucose concentrations greater than 6 mM. In conclusion, lactate is a major metabolite of glucose in adipocytes, particularly in the large fat cells. Adipose tissue may therefore be a major site of lactate production, particularly in states of altered glucose metabolism (i.e., hyperglycemia) and obesity.  相似文献   

5.
M A Wahl  R G Waldner  H P Ammon 《Life sciences》1992,51(21):1631-1637
Potassium channels of fetal rat islets have been recently reported to be inadequately regulated by stimulation with glucose when compared to islets of adult rats. Though in patch clamp experiments the properties of their KATP-channels were shown to be comparable to those from adult rats, until now no closure could be demonstrated with the technique measuring the 86Rb+ efflux. Using this technique, in the presence of a basal (3 mM) glucose concentration the 86Rb+ efflux was completely insensitive to a stimulation with glucose (5.6 mM) or tolbutamide. In contrast, in islets perifused in the absence of glucose the introduction of a low glucose concentration (3 mM) or stimulation with tolbutamide alone inhibited the 86Rb+ efflux, confirming the presence of functioning KATP-channels. The absolute value of the 86Rb+ efflux rate in the absence of glucose was, however, much lower in fetal rat islets as normally observed in adult rat islets. Apart from this, the ATP content of fetal rat islets remained unchanged at either glucose concentration tested. It is suggested that in islets of fetal rats a K+ permeability is present and can be inhibited by glucose and tolbutamide but in contrast to islets of adult rats the K+ efflux is already maximally inhibited in the presence of 3 mM glucose. This may be one reason why pancreatic islets of fetal rats do not respond to glucose-stimulation with an adequate calcium uptake and insulin release.  相似文献   

6.
Studies on the intact avascular cornea reveal two types of lactate effluxes: exogenous glucose-elicited and spontaneous. The former type exhibits characteristics resembling the proton-lactate symport system previously found in tumor cells and erythrocytes, including an enhanced lactate efflux at a higher extracellular pH and in the presence of H+ and K+ ionophores, and an inhibition by mersalyl with subsequent lactate accumulation in the tissue and cessation of glycolytic activity. The latter type occurs immediately following the incubation of freshly isolated cornea in a medium containing no exogenous glucose, with a rate about 10 times that of exogenous glucose-elicited lactate efflux. It is insensitive to 10 mM iodoacetate and lacks the characteristics of the proton-lactate symport system. Findings reveal that about 50% of corneal glucose utilization occurs in the epithelium, with the stroma and endothelium sharing the other 50% approximately equally. Of the glucose utilized, the lactate formation to pyruvate oxidation rate ratios are approximately 1:1 in the epithelium, 2:1 in the stroma, and 1:2 in the endothelium. About 79% of total tissue lactate is formed in the epithelium and stroma, and in vivo, this is probably pumped into the stromal extracellular space (about 90% of total tissue volume) via the proton-lactate symport system, with spontaneous release into the aqueous humor via a simple diffusion process. The H+ and K+ ionophores facilitate lactate efflux at the expense of the cellular pyruvate pool, without significant effect on the glucose uptake and glycolytic activity. These findings suggest that the ionophore-mediated lactate efflux favors the reduction of low pyruvate concentration in the tissue, rather than parallel increases in glycolytic activity.  相似文献   

7.
Perfusion of isolated rat hearts with a phosphocreatine (10(-4) M) containing solution to which strophanthin or KCl had been added up to a concentration of 27 mM as well as Ca2+ depletion decreased phosphocreatine concentration in the perfusate with a simultaneous increase in creatine and phosphocreatine concentrations in the myocardium. Neither high extracellular concentrations of Na+ (200 mM), nor phosphocreatine increased creatine and phosphocreatine levels in the myocardium. The effect of high sodium perfusion media was completely reversed by strophanthin. Phosphocreatine decreased the lactate content in the perfusate. Strophanthin or potassium chloride enhanced the effect of phosphocreatine on the lactate release. Conversely, creatine augmented the lactate content in the perfusate. A high specificity of the phosphocreatine effect on the myocardium independently of the ionic composition of the perfusate was postulated. A mechanism of protective effects of phosphocreatine and high sodium perfusion media on "calcium paradox" is proposed.  相似文献   

8.
Seminiferous tubules of rats exposed to x-irradiation before birth were subjected to micropuncture in situ at 50 days of age to obtain samples of fluid 4 h after ligation of efferent ducts. The concentrations of cations in this fluid were: potassium, 39.7 +/- 1.2 mM, and sodium, 136.3 +/- 1.2 mM (means and standard errors, n = 5). Histologic examination revealed that germ cells constitute less than 1% of the cell population within the seminiferous tubules of these rats; the remaining cells were all Sertoli cells. Sertoli cells showed efflux of 86Rb+ with t1/2 of approximately 11 min and an active ATPase in plasma membranes. These activities were similar to those of Sertoli cells from normal rats. Germ cells from normal rats showed less rapid efflux of 86Rb+ (t1/2 greater than 60 min) and less active Na+/K+ ATPase in plasma membranes. It is concluded that Sertoli cells are responsible for the high concentration of potassium in seminiferous tubule fluid and that plasma membranes of these cells contain an active K+ pump that is not inhibited by ouabain (1 mM).  相似文献   

9.
Ouabain increases the enzyme secretion from the isolated rabbit pancreas and pancreatic fragments, but not from isolated pancreatic acini. The increase occurs after a delay of 45-60 min and is not accompanied by an increase in lactate dehydrogenase release. The stimulatory effect of ouabain (10(-5) M) is dependent on the presence of extracellular calcium, and is not antagonized by 10(-4) M atropin, 10(-4) M propranolol, 10(-5) M phentolamine, 10(-3) M dibutyryl-cyclic GMP, 10(-6) M tetrodotoxin, 10(-4) M verapamil or 10(-4) M D-600. Elevation of the extracellular potassium concentration to 120 mM in the presence of 10(-4) M atropin also increases the enzyme secretion from rabbit pancreatic fragments. The increase is again dependent on the presence of extracellular calcium and is resistant to adrenergic blockade and to tetrodotoxin, verapamil or D-600. Forskolin also stimulates a Ca2+-dependent release of amylase from pancreatic fragments but not from pancreatic acini. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IMX), ouabain (10(-5) M) and K+ (120 mM) cause an immediate increase in the cyclic AMP content of pancreatic fragments which does not occur in the absence of extracellular calcium. In pancreatic acini, the cAMP production is only slightly increased by ouabain. In the absence of IMX, the cAMP levels in fragments or acini are not detectably altered by ouabain or K+. The results suggest that the stimulation of enzyme secretion by ouabain and high K+ is an indirect effect, mediated by the release of an endogenous transmitter from non-cholinergic, non-adrenergic nerves in the intact preparations. The release and/or the effect of the transmitter appears to be mediated primarily by Ca2+ and secondarily by cyclic AMP.  相似文献   

10.
(1) A systematic investigation was carried out into the use of time-expired erythrocytes in an isolated perfused skeletal muscle preparation. Comparisons were made between erythrocytes subjected to a process of 'rejuvenation' (Rennie and Holloszy (1977), Biochem. J. 168, 161-170) and untreated erythrocytes (controls). (2) The use of rejuvenated erythrocytes had no significant effect on concentrations of muscle ATP, phosphocreatine and lactate, nor fractional rates of muscle protein synthesis. However, muscle water concentrations were reduced when compared to controls. (3) There was an influx of K+ from the plasma into rejuvenated erythrocytes. This was accompanied by a substantial loss (17%) of intramuscular K+. There was also loss of K+ from control preparations but this amounted to approx. 1% of muscle content. (4) Erythrocyte fragility was greater in the control perfusate (6%, haemolysis) when compared to the medium with rejuvenated cells (1%, haemolysis). As a consequence of either erythrocyte storage, rejuvenation or haemolysis, plasma concentrations of phosphate, magnesium, calcium and potassium were significantly different from starting values, by as much as 300% in both groups, and varied throughout the study. (5) It is concluded that the use of rejuvenated erythrocytes does not confer any advantage in unexercised perfused skeletal muscle preparations. However, both types of erythrocyte induce changes in perfusate composition relative to starting or in vivo profiles.  相似文献   

11.
The potential role of adrenergic mechanisms in the recovery of potassium balance and acid-base status following 5 min of exhausting exercise was studied in carp. The extracellular metabolic H+ load after exercise matched the lactate load, suggesting similar release rates of H+ and lactate from white muscle. Blockage of alpha-adrenoceptors by phentolamine or beta-adrenoceptors by propranolol neither influenced absolute magnitudes nor recovery kinetics of extracellular H+ and lactate loads. The arterial oxygen tension increased following exercise, but blood oxygen transport was not improved via a red cell beta-adrenergic response or modulation of the red cell nucleoside triphosphate content. Exercise induced an increase in extracellular [K+] which was corrected within 30-60 min of recovery. The recovery of K+ balance was not influenced by blockage of adrenergic receptors. Red cell [K+] changed only insignificantly following exercise, whereby a possible function of the red cells as a temporary depository for K+ during the extracellular hyperkalaemia could not be established. The minimal influence of catecholamines on the measured parameters during recovery from exercise was supported by an absence of change in these parameters upon adrenaline injection in resting carp.  相似文献   

12.
Introduction of valinomycin into erythrocyte incubation medium increased the cell stability to water-induced hemolysis. In these conditions the erythrocytes of spontaneously hypertensive and normotensive (control) rats release 63.2 +/- 1.5% and 80.9 +/- 1.6%, respectively, of the total hemoglobin content. Valinomycin effect is completely abolished with K+ substitution for Na+ and is independent of extracellular Ca2+ concentration. Valinomycin had no effect on human erythrocyte osmotic stability. It has been shown that valinomycin-induced kinetics of Na+ and K+ redistribution was different in human and rat erythrocytes. The distinctions are thought to be related to specific anion transport mediated by the third band protein--the main component of membrane cytoskeleton.  相似文献   

13.
The uptake and K(+)-evoked (40 mM) release of 3H-norepinephrine (3H-NE) in mesodiencephalic synaptosomes of adult and senescent rats and the effect of N-acetylaspartic acid (NAA) on these processes have been studied. It has been shown that the uptake of 3H-NE by old rats is reduced considerably. The K(+)-evoked release of 3H-NE from rats synaptosomes is significantly decreased in aged rats. In the presence of 10(-4)-3.10(-3) M NAA the uptake of 3H-NE by adult and senescent rats synaptosomes remains unchanged. In these concentrations NAA inhibits the K(+)-evoked release of 3H-NE from synaptosomes of adult rats, but it exerts no effect on this process in senescent rats.  相似文献   

14.
The effect of 460 MHz microwave radiation on the ion-transporting properties of the isolated rat erythrocytes was studied with the use of K+, H+ and Cl(-)-selective electrodes. In comparison with the control cells kept at 0 degree C the most significant changes were observed in the K+ transport system. Particularly, microwave radiation (specific absorbed rate 280 W/kg) caused an increased loss of K+ during treatment and 2-fold decrease in the rate of K+ efflux from the irradiated erythrocytes, when the latter were incubated in the isoosmotic, unbuffered sucrose. The same changes were observed when the erythrocytes were conventionally heated up to 39 degrees C for 20 minutes. It is concluded that high levels of microwave radiation cause temperature-induced changes of the membrane structure resulting in alterations in potassium transport across the membrane.  相似文献   

15.
Under normal conditions (pH0 = 7.4, pHi = 7.1-7.2) amiloride, a Na+/H+ exchange inhibitor, does not influence Na+ intake by human and rat erythrocytes. Acidification of the cytoplasm (pHi approximately 6.4) is accompanied by the acceleration of 22Na intake, which is decreased after addition of 1 mM amiloride (by 50 and 80%, respectively). The Ki value of amiloride for human and rat erythrocytes is 30 and 250 microM, respectively. In rat erythrocytes the dependence of the rate of the delta pH-induced incorporation of 22Na on Na+ concentration is described by a saturation curve (K0.5 for Na0+ is approximately 40 mM), whereas in human erythrocytes it obeys the diffusion kinetics. These results suggest that the Na+/H+ exchange takes place in rat erythrocytes, but is absent in human erythrocytes. In rat erythrocytes the Na+/H+ exchange can be induced by cell compression which can be caused either by decreasing the KCl content (after addition of valinomycin) or by increasing the osmolarity of the medium (in the presence of sucrose). The rate of Na+/H+ exchange induced by cell compression is increased by 60-70% after addition of protein kinases A and C activators. No effect of intracellular Ca2+ on the rate of the Na+/H+ exchange in rat erythrocytes is observed.  相似文献   

16.
Pigeon erythrocytes were carefully washed in an isotonic neutral buffer, devoid of potassium, and the rate of passive unidirectional efflux of potassium from the cells into a K+-free medium was measured after 20 min, at 40 degrees C. Isoproterenol inhibits K+-efflux by 35-45%, at a cell concentration of 1%; the isoproterenol effect is mediated by beta-adrenergic receptors. Cyclic AMP mimics the effect of isoproterenol, but at 4-5 orders of magnitude higher concentrations. Cyclic AMP increases 20-fold the phosphorylation of purified cell membranes by [gamma 32P]ATP.  相似文献   

17.
1. The quantities of serotonin that are released from isolated leech ganglia in vitro were measured with the sensitive neurochemical techniques of HPLC-EC. 2. Segmental ganglia were exposed to elevated concentrations of potassium that depolarize leech serotonin-containing neurons by approximately 35 mV per decade. 3. Each segmental ganglion released on average 0.20 pmol of serotonin during 10 min of incubation in a solution containing 64 mM K+. 4. The rate of serotonin release increased nearly four-fold to 0.74 pmol/10 min when ganglia were incubated in 120 mM K+. 5. The rates of ganglionic serotonin release in 120 mM K+ were quantitatively similar in these three, experimentally important species of leeches: Hirudo medicinalis, Macrobdella decora and Haementeria ghilianii. 6. Ionic substitution experiments with the divalent cations Mg2+ and Co2+ indicated that the release of serotonin from leech ganglia is mediated by a Ca2+ dependent process. 7. The serotonin-uptake blockers, imipramine and chlorimipramine, did not increase the amount of serotonin released in elevated potassium. 8. Vitally staining the identified serotonin-containing neurons with Neutral Red dye did not reduce the quantity of serotonin that was released from the ganglia in elevated potassium. 9. This study demonstrates the capacity of leech ganglia to release the neurochemical serotonin, and the rates of transmitter release increase with the degree of depolarization of serotonin-containing neurons.  相似文献   

18.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0 degrees C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K](amb.) - 0.003 in which [K](amb.) refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories +/- 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.  相似文献   

20.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号