首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Metabonomic profiles of the type 2 diabetic rats induced by streptozotocin and high-sugar, high fat diet on the treatment of Gegen Qinlian Decoction (GQD) for 9 weeks were investigated. Rats were randomly divided into five groups: normal control (NC), type 2 diabetes (DM), metformin hydrochloric, GQD in high and low dosages. Plasma samples for 1H NMR-based metabolomic research, serum samples for clinical biochemistry, and liver and pancreas tissues for histopathology test were collected. Compared with NC rats, metabolic pathways of DM rats were revealed to be altered by pattern analyses of plasma NMR data, which was further correlated with serum biochemistry. Cross-validated scores mean trajectory derived from PLS-DA of NMR spectra demonstrated that GQD significantly restored the abnormal metabolic state in the long run, more potent than metformin hydrochloric. Detailed analysis of the altered metabolite levels indicated that GQD significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, amino acid metabolism and gut microbial metabolism and N-acetyl group metabolism. The results confirmed the hypoglycemic efficacy of GQD and its ability to ameliorate the diabetic symptoms in a global scale. NMR-based metabonomics approach is helpful for the further understanding of diabetes-related mechanisms.  相似文献   

2.
Metabolism of LB42908, a novel farnesyl transferase inhibitor, was investigated for preclinical development. In vitro hepatic metabolism of LB42908 gave rise to at least 9 metabolites via phase I biotransformation pathways, which were characterized by HPLC-UV, LC-MS, and LC-MS/MS analyses. N-Dealkylation was shown to be a major phase I metabolic pathway. Species-specific in vitro metabolism of LB42908 was studied in liver fractions of rat, dog, monkey, and human. Order of metabolic stability is human≈dog>rat≈monkey in both S9 and microsomal fractions. Tissue-specific metabolism of LB42908 in various tissue homogenates of rats demonstrated that the liver was the major organ responsible for phase I metabolism of LB42908. The results from both qualitative and quantitative metabolism studies such as metabolic profiling and metabolic clearance indicated that dog would be the animal model of choice for preclinical toxicology studies. In addition, LB42908 was a potent CYP3A4 inhibitor in human liver microsomes and induced the activities of several CYP isozymes, implying that it has the potential for drug-drug interactions. Repeated dosing of LB42908 in rats did not significantly affect its own metabolism, indicating that long-term administration of LB42908 would not alter its pharmacokinetic profiles.  相似文献   

3.
Sleep curtailment is ubiquitous in modern day society. Sleep debt is associated with maladaptive physiological changes that can lead to cardiometabolic and neuropsychiatric pathologies. Recent literature has shown the effects of sleep restriction (SR) on systemic metabolic profiles in biofluids, implying that tissue-specific metabolomes are impacted by SR. To test this hypothesis, we assessed hepatic metabolic profiles of rats after 5 days of SR using UPLC–MS based metabolomics analysis and gene expression analysis. Our data suggests distinctive effects of SR on the liver metabolic profile of rats compared to forced-activity control animals. We observed specific impacts of SR on NAD metabolism through NAD accumulation and upregulation of Nampt, the rate determining step of NAD salvage. Additional multi-omic changes were observed in methionine metabolism, with an elevated SAM:SAH ratio under SR. This effect on one carbon metabolism is indicative of increased methylation potential. Changes in TCA cycle intermediates and ATP-citrate lyase (Acly) gene expression were observed that may be related to altered circulatory lipid profiles previously reported documenting the chrono-metabolic connection. Taken together with previous investigations, these observations are consistent with a model of decreased TCA activity with concomitant increase in lipogenesis induced by SR. These tissue-specific mechanistic insights into metabolic effects of SR provide a springboard to future metabolic intervention studies.  相似文献   

4.
Multivariate metabolic profiles from biofluids such as urine and plasma are highly indicative of the biological fitness of complex organisms and can be captured analytically in order to derive top-down systems biology models. The application of currently available modeling approaches to human and animal metabolic pathway modeling is problematic because of multicompartmental cellular and tissue exchange of metabolites operating on many time scales. Hence, novel approaches are needed to analyze metabolic data obtained using minimally invasive sampling methods in order to reconstruct the patho-physiological modulations of metabolic interactions that are representative of whole system dynamics. Here, we show that spectroscopically derived metabolic data in experimental liver injury studies (induced by hydrazine and alpha-napthylisothiocyanate treatment) can be used to derive insightful probabilistic graphical models of metabolite dependencies, which we refer to as metabolic interactome maps. Using these, system level mechanistic information on homeostasis can be inferred, and the degree of reversibility of induced lesions can be related to variations in the metabolic network patterns. This approach has wider application in assessment of system level dysfunction in animal or human studies from noninvasive measurements.  相似文献   

5.
Experimental and theoretical microdialysis studies of in situ metabolism   总被引:2,自引:0,他引:2  
Microdialysis sampling was performed to monitor localized metabolism in vivo and in vitro. A mathematical model that accounts for analyte mass transport during microdialysis sampling was used to predict metabolite concentrations in the microdialysis probe during localized metabolism experiments. The model predicts that metabolite concentrations obtained in the microdialysis probe are a function of different experimental parameters including membrane length, perfusion fluid flow rate, and sample diffusive and kinetic properties. Different microdialysis experimental parameters including membrane length and perfusion fluid flow rate were varied to affect substrate extraction efficiency (E(d)), or loss to the sample matrix, in vivo and in vitro. Local hepatic metabolism was studied in vivo in male Sprague-Dawley rats by infusing acetaminophen through the microdialysis probe. Acetaminophen sulfate concentrations increased linearly with respect to acetaminophen E(d) in contrast to modeling predictions. Xanthine oxidase was used as an in vitro model of localized metabolism. In vitro experimental results partially matched modeling predictions for 10-mm probes. These results suggest that monitoring local metabolism using microdialysis sampling is feasible. It is important to consider system parameters such as dialysis flow rate, membrane length, and sample properties because these factors will affect analyte concentrations obtained during local metabolism experiments.  相似文献   

6.

Background

Hyperlipidemia, with an increasing of prevalence, has become one of the common metabolic diseases in companion animal clinic. Aspirin eugenol ester (AEE) is a novel compound that exhibits efficacious anti-hyperlipidemia activities. However, its mechanisms are still not completely known. The objective of present study was to investigate the intervention effects of AEE on cecal contents metabonomics profile and microbiota in hyperlipidemia rats.

Results

Three groups of rats were fed with a control diet, or high fat diet (HFD) containing or not AEE. The results showed the beneficial effects of AEE in HFD-fed rats such as the reducing of aspartate aminotransferase (AST) and total cholesterol (TCH). Distinct changes in metabonomics profile of cecal contents were observed among control, model and AEE groups. HFD-induced alterations of eight metabolites in cecal contents mainly related with purine metabolism, linoleic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and pyrimidine metabolism were reversed by AEE treatment. Principal coordinate analysis (PCoA) and cluster analysis of microbiota showed altered patterns with distinct differences in AEE group versus model group, indicating that AEE treatment improved the negative effects caused by HFD on cecal microbiota. In addition, the correction analysis revealed the possible link between the identified metabolites and cecal microbiota.

Conclusions

This study showed regulation effects of AEE on cecal contents metabonomics profile and microbiota, which could provide information to reveal the possible underlying mechanism of AEE on hyperlipidemia treatment.
  相似文献   

7.
Mequindox is used as a veterinary antibiotic drug. As part of systematic investigations into mequindox as a veterinary medicine and its subsequent applications in food safety, we conducted the investigation to assess the metabolic response of mice to mequindox using metabonomics, which combines NMR metabolic profiles of biofluids or tissues and pattern recognition data analysis. In this study, we delivered a single dose of mequindox to mice with dosage levels of 15, 75, and 350 mg/kg body weight and collected urine samples over a 7 day period, as well as plasma and liver tissues at 7 days postdose. Principal components analysis (PCA) and orthogonal projection to latent structure discriminant analysis (O-PLS-DA) were performed on (1)H NMR spectra of biofluids and liver, showing that low dose levels of mequindox exposure had no adverse effects, consistent with histological observations of the liver. High and moderate levels of mequindox exposure caused suppression of glycolysis and stimulation of fatty acid oxidation accompanied with increased levels of oxidative stress. Our metabonomic analyses also showed disruption of amino acid metabolism, consistent with liver damage observed from histopathological examinations. Furthermore, mequindox perturbed gut microbial activity manifested in the altered excretion of urinary trimethylamine (TMA), trimethylamine-N-oxide (TMAO), hippurate, phenylacetylglycine (PAG), and phenylacetate. The putative gut microbial function may also contribute to the assembly and secretion of very-low-density lipoproteins from the liver to the plasma. Our work provides important insights on the metabolic responses of mequindox.  相似文献   

8.
Principal component analysis (PCA) has been applied to three nuclear magnetic resonance (NMR) spectral editing methods, namely, the Carr-Purcell-Meiboom-Gill spin-echo, diffusion editing, and skyline projection of a two-dimensional J-resolved spectrum, obtained from high-resolution magic-angle spinning NMR spectroscopy of liver tissues, to distinguish between control and hydrazine-treated rats. The effects of the toxin on rat liver biochemistry were directly observed and characterized by depleted levels of liver glycogen, choline, taurine, trimethylamine N-oxide, and glucose and by elevated levels of lipids and alanine. The highly unsaturated omega-3-type fatty acid was observed for the first time in hydrazine-treated rat liver. The contributions of the metabolites to the separation of control from dosed liver tissues varied depending on the type of spectral editing method used. We have shown that subtle changes in the metabolic profiles can be selectively amplified using a metabonomics approach based on the different NMR spectral editing techniques in conjunction with PCA.  相似文献   

9.

Background

Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on.

Methodology/Principal Findings

Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data.

Conclusions/Significances

The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.  相似文献   

10.
ABSTRACT

The influence of phytoestrogens (genistein and coumestrol) and mycoestrogen (zearalenone) on insulin secretion, liver insulin receptors and some aspects of lipid and carbohydrate metabolism were investigated in this study. Ovariectomized rats were injected s.c. with the above mentioned compounds in the amount of 1?mg for three days. Coumestrol and zearalenone caused a significant increase in uterus weight, similar to the effects observed after estrone action, while this effect was not observed after the genistein injection. Blood insulin level was not changed after phyto- or mycoestrogen treatment. However, coumestrol and genistein significantly decreased the binding capacity of liver insulin receptors. These changes corresponded with alterations in glucose and free fatty acids profiles in blood, as well as with glycogen content in liver. The effects observed after genistein and coumestrol injections differed from those noticed in rats treated with zearalenone or estrone. On the basis of these results we conclude that metabolic effects of high doses of coumestrol and genistein in ovariectomized rats are partly mediated by changes in insulin sensitivity of the liver and that the action of plant estrogens on metabolism is, at least to the some degree, independent of their estrogen activity.  相似文献   

11.
The influence of phytoestrogens (genistein and coumestrol) and mycoestrogen (zearalenone) on insulin secretion, liver insulin receptors and some aspects of lipid and carbohydrate metabolism were investigated in this study. Ovariectomized rats were injected s.c. with the above mentioned compounds in the amount of 1 mg for three days. Coumestrol and zearalenone caused a significant increase in uterus weight, similar to the effects observed after estrone action, while this effect was not observed after the genistein injection. Blood insulin level was not changed after phyto- or mycoestrogen treatment. However, coumestrol and genistein significantly decreased the binding capacity of liver insulin receptors. These changes corresponded with alterations in glucose and free fatty acids profiles in blood, as well as with glycogen content in liver. The effects observed after genistein and coumestrol injections differed from those noticed in rats treated with zearalenone or estrone. On the basis of these results we conclude that metabolic effects of high doses of coumestrol and genistein in ovariectomized rats are partly mediated by changes in insulin sensitivity of the liver and that the action of plant estrogens on metabolism is, at least to the some degree, independent of their estrogen activity.  相似文献   

12.
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.  相似文献   

13.
This work characterized the metabolism disorders of acute liver failure (ALF) induced by carbon tetrachloride (CCl(4)) in a mouse model with different dosage of intoxication (100, 500 and 1000 mg/kg). Metabolic profiles of mice plasma were detected by gas chromatography/mass spectrometry (GC/MS) after chemical derivatization. Here an effective information-extracting approach was implemented on the basis of partial least square regression analysis (PLS-RA). PLS modeling was achieved with two kinds of Y-vectors for the acquired metabonomics data and eight metabolites with different changing behaviors were selected. ALF of mice induced by CCl(4) was characterized by the elevation of glutamate, citrate, serine and threonine, as well as the decrease of alpha-glycerophosphate, docosahexaenoic acid, palmitic acid and oleic acid in plasma. The difference in the concentrations of serine, threonine, palmitic acid and oleic acid remained insignificant between the control and 100mg/kg groups, while significant distinction appeared when comparing the control and two higher dosed groups. The underlying regulation of CCl(4)-perturbed metabolic pathways was discussed according to the selected metabolites. The present study demonstrated a great potential of PLS-RA in exploiting a comprehensive metabolic effects of CCl(4) intoxication and its efficient capability to reveal the hepatotoxic mechanism of ALF induced by reactive oxygen species (ROS).  相似文献   

14.
15.
Zhao YY  Cheng XL  Wei F  Xiao XY  Sun WJ  Zhang Y  Lin RC 《Biomarkers》2012,17(1):48-55
An ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF MS) metabonomics approach was employed to study the serum metabolic profiling of adenine-induced chronic renal failure (CRF) rats. Acquired data were subjected to principal component analysis (PCA) for differentiating the CRF and the normal control groups. Potential biomarkers were screened by using S-plot and were identified by the accurate mass, isotopic pattern and MS/MS fragments information obtained from UPLC Q-TOF MS analysis. Significant differences in the serum level of creatinine, amino acids and LysoPCs were observed, indicating the perturbations of amino acid metabolism and phospholipid metabolism in adenine-induced CRF rats. This research proved that metabonomics is a promising tool for disease research.  相似文献   

16.
B Quistorff  N Katz  L A Witters 《Enzyme》1992,46(1-3):59-71
Lipid metabolism appears to be less zonated than carbohydrate and protein metabolism. Studies on the zonation of lipid metabolism have been centered in particular on fatty acid synthesis which, according to the concept of metabolic zonation, should be a predominantly perivenous process while fatty acid oxidation should be periportal. There are, however, conflicting data on the activity gradients of lipogenic enzymes as well as measurements of actual synthesis of fatty acid and very low density lipoprotein. Data obtained by microdissection show a 1.5- to 2-fold higher activity of acetyl-CoA carboxylase and citrate lyase in the perivenous zone in agreement with measurements of the actual rate of fatty acid synthesis in preparations of hepatocyte, enriched in periportal or perivenous cells. On the other hand, results obtained with the dual-digitonin-pulse perfusion technique demonstrate the opposite gradient in the form of a 2- to 3-fold higher specific activity of acetyl-CoA carboxylase in the periportal zone based on measurements of the acetyl-CoA carboxylase protein proper. This specific activity gradient, which applies to male and not female rats, disappears almost completely in the fasted-refed animal, were lipogenesis is strongly induced. In this review we attempt to rationalize these discrepancies in the results as methodological differences which in particular apply to the following parameters: (1) expression of results (reference substance); (2) selectivity of zonal sampling, and (3) differences in methodology of acetyl-CoA carboxylase measurements. It is concluded that these factors could account for the discrepancies, but further studies, in particular on the zonation acetyl-CoA carboxylase mRNA, are required in order to further understand the zonation of lipid metabolism and its possible role in the metabolic regulation of the liver.  相似文献   

17.
This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).  相似文献   

18.
Soybean polypeptide TTYY has substantial antioxidant activity. The present study aimed to investigate the mechanisms of the potential ability of TTYY to allow rats to recover from oxidative damage using 1H-NMR-based metabonomics. Male Wistar rats received injections of d-galactose to establish the oxidative damage model, then gavaged with TTYY. After treatment, principal component analysis and partial least squares-discriminant analysis were performed to identify different metabolic profiles based on the 1H-NMR spectra of urine from rats and liver antioxidant capacity analysis were also performed. The oxidation-induced changed in biological endpoints were reversed to a certain extent in the rats treated with TTYY compared with the control group. The potential biomarkers in the urine were identified as follows: pyruvate, 2-ketoglutarate, alanine, glycine, citrate, creatine, lactate, and acetate. The results show that TTYY may counterbalance the oxidative damage induced by d-galactose, and most likely plays a role in the changes observed in certain metabolic pathways including those involved in energy, amino acid, and glycolysis metabolisms.  相似文献   

19.
A metabolomics-based systems toxicology approach was used to profile the urinary metabolites for the toxicity related processes and pathogenesis induced by doxorubicin (DOX) to rats. Endogenous metabolite profiles were obtained with ultra performance liquid chromatography-mass spectrometry (UPLC-MS) for rats receiving different single dosages of DOX (5, 10 or 20 mg/kg) prior and at three time points after dosage. Principal components analysis (PCA) allowed detection of two major systemic metabolic changes with the time due to the induced toxicity. Furthermore, Analysis of variance (ANOVA) Simultaneous Component Analysis (ASCA) was applied to reveal the variation caused by time and dose, and their interaction in a multivariate way. Finally, various metabolites involved in the toxic processes could be identified using their accurate mass and MSn experiments, and possible mechanisms of the toxicity of DOX were postulated. In conclusion, metabolomics as a systems toxicology approach was able to provide comprehensive information on the dynamic process of drug induced toxicity. In addition, detection of the systemic toxic effects could be obtained with metabolomics at an earlier stage compared to the clinical chemistry and histopathological assessment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号