首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two v-erbA-related genes, named ear-2 and ear-3, have been identified in the human genome and characterized by cDNA cloning. These genes are predicted to encode proteins that are very similar in primary structure to receptors for steroid hormones or thyroid hormone (T3). In addition, amino acid sequences of the ear-2 and ear-3 gene products are very similar each other especially at the DNA binding domain (86% homology) and at the putative ligand binding domain (76% homology). Northern hybridization with ear DNA probes of RNAs from various tissues of a human fetus reveals that the expression of ear-2 is high in the liver whereas the expression of ear-3 is relatively ubiquitous. Hybridization analysis of DNAs from sorted chromosomes shows that the ear-2 gene is located on chromosome 19 and ear-3 on chromosome 5, indicating that the two genes are clearly different from each other.  相似文献   

2.
The action of human rIL-1 beta on confluent, quiescent monolayers of human umbilical vein endothelial cells (HUVEC) has been studied for the induction of new membrane proteins. Two approaches have been taken. The first is a quantitative two-dimensional gel analysis of [35S]cysteine-labeled membrane proteins of HUVEC with and without cytokine treatment. This analysis indicates that there are a restricted number of new membrane proteins synthesized in the first 6 h of IL-1 treatment, on the order of 19 out of a total of over 600 detectable proteins. Second, we have prepared two mAb (1E7 and 2G7) to different epitopes of a major inducible sialoglycoprotein with molecular mass of 114 kDa and an isoelectric point of 4.6 to 4.8. These antibodies were compared with two additional antibodies, 3B7 and 7A9, which were shown to react with the endothelial leukocyte adhesion molecule-1 (ELAM-1) protein as expressed in COS cells. The 1E7/2G7 protein is distinct from ELAM-1, based upon biochemical comparisons as well as the inability of the 1E7 and 2G7 antibodies to react with ELAM-1-transfected COS cells. The protein defined as 1E7/2G7 is neither expressed constitutively nor in an inducible manner on PBMC, granulocytes, platelets, fibroblasts, or keratinocytes. The 7A9 and 3B7 antibodies are shown to block granulocyte binding to IL-1-activated HUVEC. The 2G7 antibody is effective at inhibiting the binding of T cells but not granulocytes to IL-1-activated endothelium, suggesting this new protein is an adhesion protein that may be active in vivo in T cell-endothelial cell adhesion-related events such as inflammation or lymphocyte recirculation. In addition, T cells were shown to utilize the ELAM-1 protein in binding to cytokine-activated HUVEC. Antibodies directed to both proteins had additive effects on inhibition of T cell adhesion.  相似文献   

3.
4.
We used a baculovirus-based system to prepare structural proteins of hepatitis C virus (HCV) genotype 1a. Binding of this preparation to cultured human hepatic cells was both dose dependent and saturable. This binding was decreased by calcium depletion and was partially prevented by ligands of the asialoglycoprotein receptor (ASGP-R), thyroglobulin, asialothyroglobulin, and antibody against a peptide in the carbohydrate recognition domain of ASGP-R but not preimmune antibody. Uptake by hepatocytes was observed with both radiolabeled and dye-labeled HCV structural proteins. With hepatocytes expressing the hH1 subunit of the ASGP-R fused to green fluorescent protein, we could show by confocal microscopy that dye stain cointernalized with the fusion protein in an area surrounding the nucleus. Internalization was more efficient with a preparation containing p7 than with one that did not. The two preparations bound to transfected 3T3-L1 cells expressing either both (hH1 and hH2) subunits of the ASGP-R (3T3-22Z cells) or both hH1 and a functionally defective variant of hH2 (3T3-24X cells) but not to parental cells. Additionally, uptake of dye-labeled preparation containing p7 was observed with 3T3-22Z cells but not with 3T3-L1 or 3T3-24X cells or with the preparation lacking p7, suggesting that p7 regulates the internalization properties of HCV structural proteins. Our observations suggest that HCV structural proteins bind to and cointernalize with the ASGP-R in cultured human hepatocytes.  相似文献   

5.
The DNA tumor virus oncogenes (adenovirus E1A, simian virus 40 (SV40) large T antigen, and papillomavirus E7) have been instrumental in illuminating the molecules and mechanisms of cell cycle progression and carcinogenesis. However, since these multifunctional proteins target so many important cellular regulators, it is sometimes difficult to establish the functional importance of any individual interaction. Perhaps a herpesvirus protein, newly defined as a cell cycle regulator, can help address these issues. Like the DNA tumor virus proteins, the human cytomegalovirus (HCMV) pp71 protein contains a retinoblastoma protein (Rb) binding motif (LxCxD), and stimulates DNA synthesis in quiescent cells. Unlike E1A, T antigen, and E7, pp71 expression does not induce apoptosis, nor does it cooperate to transform primary cells. Determining how pp71 induces cell cycle progression without invoking apoptosis or leading to cellular transformation may help in defining the signals that ultimately lead to these processes.  相似文献   

6.
Galectins are a family of mammalian beta-galactoside-binding proteins that positively and negatively regulate T cell death. Extracellular galectin-1 directly induces death of T cells and thymocytes, while intracellular galectin-3 blocks T cell death. In contrast to the antiapoptotic function of intracellular galectin-3, we demonstrate that extracellular galectin-3 directly induces death of human thymocytes and T cells. However, events in galectin-3- and galectin-1-induced cell death differ in a number of ways. Thymocyte subsets demonstrate different susceptibility to the two galectins: whereas galectin-1 kills double-negative and double-positive human thymocytes with equal efficiency, galectin-3 preferentially kills double-negative thymocytes. Galectin-3 binds to a complement of T cell surface glycoprotein receptors distinct from that recognized by galectin-1. Of these glycoprotein receptors, CD45 and CD71, but not CD29 and CD43, appear to be involved in galectin-3-induced T cell death. In addition, CD7 that is required for galectin-1-induced death is not required for death triggered by galectin-3. Following galectin-3 binding, CD45 remains uniformly distributed on the cell surface, in contrast to the CD45 clustering induced by galectin-1. Thus, extracellular galectin-3 and galectin-1 induce death of T cells through distinct cell surface events. However, as galectin-3 and galectin-1 cell death are neither additive nor synergistic, the two death pathways may converge inside the cell.  相似文献   

7.
Pin1 is a two-domain human protein that catalyzes the cis–trans isomerization of phospho-Ser/Thr–Pro (pS/T–P) motifs in numerous cell-cycle regulatory proteins. These pS/T–P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved “latches” between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T–P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery.  相似文献   

8.
1. The binding parameters of prealbumin-2 with retinol-binding protein and thyroxine (T4) revealed the existence of distinct and multiple sites for both retinol-binding protein and T4. 2. From the analysis of binding parameters of retinol-binding protein with prealbumin-2 it is clear that under steady-state conditions about 99% of the holo-retinol-binding protein remains bound to prealbumin-2. 3. Equilibrium dialysis studies on binding properties of thyroid hormones with prealbumin-2 revealed that it has a single high affinity site and three low affinity sites. 4. The occurrence of three carrier proteins for thyroid hormones, thyroxine-binding globulin, prealbumin-2 and albumin has been demonstrated. However, the chicken thyroxine-binding globulin differs from human thyroxine-binding globulin by being relatively less acidic and occurring at a two-fold lower concentration. But the thyroid hormone binding parameters are comparable. 5. Highly sensitive methods were developed for determination of T4 binding capacities of the various proteins and plasma level of total T4 by fractionation of carrier proteins and further quantitatively employing in electrophoresis and equilibrium dialysis. 6. The thyroxine-binding proteins were found to be of two types, one (viz., thyroxine-binding globulin) of great affinity but of low binding capacity, which mainly acts as reservoir of T4, and another (viz., prealbumin-2) of low affinity but of high binding capacity, which can participate predominantly in the control of the free T4 pool.  相似文献   

9.
10.
In type-1 diabetes mellitus (T1DM) with diabetic nephropathy (DN), accumulation of abnormal proteins in the kidney and other tissues may derive from constitutive alterations of intracellular protein recognition, assembly, and turnover. We characterized the proteins involved in these functions in cultured skin fibroblasts from long-term T1DM patients with [DN+] or without [DN-] nephropathy but similar metabolic control, and from matched healthy subjects. 2-D gel electrophoresis and MS-MALDI analysis were employed. The [DN+] T1DM patients, compared with the two other groups, exhibited increased abundance of a high-molecular weight isoform of protein disulphide-isomerase A3 and a decrease of two low-molecular weight isoforms. They also had increased levels of heat shock protein (HSP) 60 kDa isoform #A4, of HSP71 kDa isoform #A30, and of HSP27 kDa isoform #6, whereas the HSP27 kDa isoforms #A90 and #A71 were decreased. Cathepsin beta-2 (#40), the cation-independent mannose 6-phosphate receptor binding protein 1 (CIMPR) (#A27), and annexin 2 (#A9) were also decreased in the [DN+] T1DM patients, whereas the RNA-binding protein regulatory subunity (#38) and the translationally-controlled tumor protein (TCTP) (#A45) were increased. These changes of chaperone-like proteins in fibroblasts may highlight those of the kidney and be patho-physiologically related to the development of nephropathy in T1DM.  相似文献   

11.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

12.
Previous studies identified two glycoproteins of 86 (gp86) and 72 (gp72) kilodaltons and two nonglycosylated proteins of 70 (p70) and 19 (p19) kilodaltons which were specifically expressed in NIH cells transformed by DNA of the MCF-7 human mammary carcinoma cell line. Pulse-chase experiments and the use of tunicamycin to inhibit glycosylation suggested that gp86, gp72, and p19 were related as precursor products. Characteristics of the four transformation-associated proteins resembled those of murine leukemia virus (MuLV) proteins. Sera raised against disrupted MuLV immunoprecipitated the same four proteins in extracts of NIH(MCF-7) cells and MuLV-infected NIH 3T3 cells. In addition, a monoclonal antibody against MuLV gp70 immunoprecipitated proteins gp86 and gp72, whereas a monoclonal antibody against MuLV p15(E) immunoprecipitated gp86 and p19. These results indicate that proteins gp86, gp72, and p19 expressed in NIH(MCF-7) transformants correspond to MuLV envelope proteins gp80env, gp70, and p15(E), respectively. The transformation-associated protein p70 appears to be a non-envelope MuLV protein, most likely p65gag. Northern blot analysis confirmed that transformation of NIH cells by MCF-7 mammary carcinoma DNA led to the induction of an endogenous MuLV provirus.  相似文献   

13.
14.
During mating of Saccharomyces cerevisiae, two nuclei fuse to produce a single diploid nucleus. Two genes, KAR7 and KAR8, were previously identified by mutations that cause defects in nuclear membrane fusion. KAR7 is allelic to SEC71, a gene involved in protein translocation into the endoplasmic reticulum. Two other translocation mutants, sec63-1 and sec72Delta, also exhibited moderate karyogamy defects. Membranes from kar7/sec71Delta and sec72Delta, but not sec63-1, exhibited reduced membrane fusion in vitro, but only at elevated temperatures. Genetic interactions between kar7 and kar5 mutations were suggestive of protein-protein interactions. Moreover, in sec71 mutants, Kar5p was absent from the SPB and was not detected by Western blot or immunoprecipitation of pulse-labeled protein. KAR8 is allelic to JEMI, encoding an endoplasmic reticulum resident DnaJ protein required for nuclear fusion. Overexpression of KAR8/JEM1 (but not SEC63) strongly suppressed the mating defect of kar2-1, suggesting that Kar2p interacts with Kar8/Jem1p for nuclear fusion. Electron microscopy analysis of kar8 mutant zygotes revealed a nuclear fusion defect different from kar2, kar5, and kar7/sec71 mutants. Analysis of double mutants suggested that Kar5p acts before Kar8/Jem1p. We propose the existence of a nuclear envelope fusion chaperone complex in which Kar2p, Kar5p, and Kar8/Jem1p are key components and Sec71p and Sec72p play auxiliary roles.  相似文献   

15.
NS1 (nonstructural protein 1) is an important virulence factor of the influenza A virus. We observed that NS1 proteins of the 1918 pandemic virus (A/Brevig Mission/1/18) and many avian influenza A viruses contain a consensus Src homology 3 (SH3) domain-binding motif. Screening of a comprehensive human SH3 phage library revealed the N-terminal SH3 of Crk and CrkL as the preferred binding partners. Studies with recombinant proteins confirmed avid binding of NS1 proteins of the 1918 virus and a representative avian H7N3 strain to Crk/CrkL SH3 but not to other SH3 domains tested, including p85alpha and p85beta. Endogenous CrkL readily co-precipitated NS1 from cells infected with the H7N3 virus. In transfected cells association with CrkL was observed for NS1 of the 1918 and H7N3 viruses but not A/Udorn/72 or A/WSN/33 NS1 lacking this sequence motif. SH3 binding was dispensable for suppression of interferon-induced gene expression by NS1 but was associated with enhanced phosphatidylinositol 3-kinase signaling, as evidenced by increased Akt phosphorylation. Thus, the Spanish Flu virus resembles avian influenza A viruses in its ability to recruit Crk/CrkL to modulate host cell signaling.  相似文献   

16.
The oncoproteins of the DNA tumor viruses, adenovirus E1A, simian virus 40 T antigen, and papillomavirus E7, each interact with the retinoblastoma family of tumor suppressors, leading to cell cycle stimulation, apoptosis induction, and cellular transformation. These proteins utilize a conserved LXCXE motif, which is also found in cellular proteins, to target the retinoblastoma family. Here, we describe a herpesvirus protein that shares a subset of the properties of the DNA tumor virus oncoproteins but maintains important differences as well. The human cytomegalovirus pp71 protein employs an LXCXD motif to attack the retinoblastoma family members and induce DNA synthesis in quiescent cells. pp71 binds to and induces the degradation of the hypophosphorylated forms of the retinoblastoma protein and its family members p107 and p130 in a proteasome-dependent manner. However, pp71 does not induce apoptosis and fails to transform cells. Thus, the similarities and differences in comparison to E1A, T antigen, and E7 make pp71 an interesting new tool with which to further dissect the role of the retinoblastoma/E2F pathway in cellular growth control and carcinogenesis.  相似文献   

17.
Ubiquitinylation of proteins appears to be mediated by the specific interplay between ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s). However, cognate E3s and/or substrate proteins have been identified for only a few E2s. To identify proteins that can interact with the human E2 UbcH7, a yeast two-hybrid screen was performed. Two proteins were identified and termed human homologue of Drosophila ariadne (HHARI) and UbcH7-associated protein (H7-AP1). Both proteins, which are widely expressed, are characterized by the presence of RING finger and in between RING fingers (IBR) domains. No other overt structural similarity was observed between the two proteins. In vitro binding studies revealed that an N-terminal RING finger motif (HHARI) and the IBR domain (HHARI and H7-AP1) are involved in the interaction of these proteins with UbcH7. Furthermore, binding of these two proteins to UbcH7 is specific insofar that both HHARI and H7-AP1 can bind to the closely related E2, UbcH8, but not to the unrelated E2s UbcH5 and UbcH1. Although it is not clear at present whether HHARI and H7-AP1 serve, for instance, as substrates for UbcH7 or represent proteins with E3 activity, our data suggests that a subset of RING finger/IBR proteins are functionally linked to the ubiquitin/proteasome pathway.  相似文献   

18.
Adaptor proteins load transmembrane protein cargo into transport vesicles and serve as nexuses for the formation of large multiprotein complexes on the nascent vesicles. The gamma-adaptin ear (GAE) domains of the AP-1 adaptor protein complex and the GGA adaptor proteins recruit accessory proteins to these multiprotein complexes by binding to a hydrophobic motif. We determined the structure of the GAE domain of human GGA3 in complex with a peptide based on the DFGPLV sequence of the accessory protein Rabaptin-5 and refined it at a resolution of 2.2 A. The leucine and valine residues of the peptide are partly buried in two contiguous shallow, hydrophobic depressions. The anchoring phenylalanine is buried in a deep pocket formed by the aliphatic portions of two conserved arginine residues, along with an alanine and a proline, illustrating the unusual function of a cluster of basic residues in binding a hydrophobic motif.  相似文献   

19.
Single-stranded DNA binding (SSB) proteins are essential proteins of DNA metabolism. We characterized the binding of the bacteriophage T4 SSB, Escherichia coli SSB, human replication protein A (hRPA), and human hSSB1 proteins onto model miniforks and double-stranded-single-stranded (ds-ss) junctions exposing 3' or 5' ssDNA overhangs. T4 SSB proteins, E. coli SSB proteins, and hRPA have a different binding preference for the ss tail exposed on model miniforks and ds-ss junctions. The T4 SSB protein preferentially binds substrates with 5' ss tails, whereas the E. coli SSB protein and hRPA show a preference for substrates with 3' ss overhangs. When interacting with ds-ss junctions or miniforks, the T4 SSB protein, E. coli SSB protein, and hRPA can destabilize not only the ds part of a ds-ss junction but also the daughter ds arm of a minifork. The T4 SSB protein displays these unwinding activities in a polar manner. Taken together, our results position the SSB protein as a potential key player in the reversal of a stalled replication fork and in gap repair-mediated repetitive sequence expansion.  相似文献   

20.
Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号