首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexander DE  Leib DA 《Autophagy》2008,4(1):101-103
Autophagy functions in part as an important host defense mechanism to engulf and degrade intracellular pathogens, a process that has been termed xenophagy. Xenophagy is detrimental to the invading microbe in terms of replication and pathogenesis and many pathogens either dampen the autophagic response, or utilize the pathway to enhance their life cycle. Herpes simplex virus type 1 (HSV-1) counteracts the induction of xenophagy through its neurovirulence protein, ICP34.5. ICP34.5 binds protein phosphatase 1alpha to counter PKR-mediated phosphorylation of eIF2alpha, and also binds the autophagy-promoting protein Beclin 1. Through these interactions, ICP34.5 prevents translational arrest and down-regulates the formation of autophagosomes. Whereas autophagy antagonism promotes neurovirulence, it has no impact on the replication of HSV-1 in permissive cultured cells. As discussed in this article, this work raises a number of questions as to the mechanism of ICP34.5-mediated inhibition of autophagy, as well as to the role of autophagy antagonism in the lifecycle of HSV-1.  相似文献   

2.
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of its human host cell and is known to interact with many cellular DNA repair proteins. In this study, we examined the role of cellular mismatch repair (MMR) proteins in the virus life cycle. Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human cells and are localized to viral replication compartments. In addition, a previously reported interaction between MSH6 and ICP8 was confirmed by coimmunoprecipitation and extended to show that UL12 is also present in this complex. We also report for the first time that MLH1 associates with ND10 nuclear bodies and that like other ND10 proteins, MLH1 is recruited to the incoming genome. Knockdown of MLH1 inhibits immediate-early viral gene expression. MSH2, on the other hand, which is generally thought to play a role in mismatch repair at a step prior to that of MLH1, is not recruited to incoming genomes and appears to act at a later step in the viral life cycle. Silencing of MSH2 appears to inhibit early gene expression. Thus, both MLH1 and MSH2 are required but appear to participate in distinct events in the virus life cycle. The observation that MLH1 plays an earlier role in HSV-1 infection than does MSH2 is surprising and may indicate a novel function for MLH1 distinct from its known MSH2-dependent role in mismatch repair.  相似文献   

3.
4.
5.
J C Macnab  A Orr    N B La Thangue 《The EMBO journal》1985,4(12):3223-3228
The cell proteins expressed in rat embryo cells transformed by herpes simplex virus (HSV) have been analysed by immunoprecipitation assays to determine those polypeptides which can be identified by immunoprecipitation with the sera of tumour-bearing animals and also with antisera to herpes simplex infected cells. Cell polypeptides commonly recognised by both these sera have been further characterised using a monoclonal antibody directed against a cellular polypeptide which accumulates on HSV-2 lytic infection. This monoclonal antibody recognises in HSV-transformed cells polypeptides of mol. wts. 90 000, 40 000 and 32 000. Further studies show that the accumulation of these polypeptides in HSV-transformed cells is not HSV specific but is a common feature of transformation or of cells which have been immortalised. We suggest that cellular polypeptides accumulating as a result of HSV infection may be of importance in the initiation of transformation by HSV, i.e., at the level of immortalisation of cells.  相似文献   

6.
Polyribosomes isolated from herpes simplex virus type I (HSV-1)-infected cells have been used to program a eucaryotic cell-free translation system. At least 10 HSV-specific polypeptides, with apparent molecular weights of 25,000 to 160,000, are synthesized by wild-type HSV-infected polyribosomes. Polyribosomes prepared from thymidine kinase-negative mutants of HSV direct the synthesis of three putative nonsense termination polypeptides. HSV-specific polypeptides synthesized in vitro are precipitated with antiserum to HSV-infected cell proteins.  相似文献   

7.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

8.
Peripheral blood monocytes and lymphocytes isolated from most humans are resistant to HSV infection in vitro. Viral replication is inhibited very early in the cycle, prior to the onset of alpha-protein synthesis; no viral protein or DNA synthesis is detectable even up to 1 week later. The enhanced expression of two 62-kDa and 57-kDa cellular proteins, however, is induced in the lymphocyte population within 3 to 5 h after infection. A 30-kDa protein is induced in the monocyte population immediately after infection. The induced expression of 62-kDa and 57-kDa lymphocyte proteins appears to be virus-mediated because: a) HSV and pseudorabies virus (although not vaccinia virus) induce the expression of 62-kDa and 57-kDa proteins, b) heat shock or exposure of lymphocytes to uninfected cell extracts does not induce expression of either protein, c) 62-kDa protein is not induced in lymphocytes stimulated with a mitogenic concentration of PHA. UV-inactivated HSV induces expression of 62-kDa and 57-kDa proteins in a manner similar to that observed with untreated virus. In contrast, expression of 30-kDa monocyte protein is induced nonspecifically by either uninfected cell extracts or cell extracts containing virus. Sixty-two-kilodalton and 57-kDa protein induction appears to be a marker for human lymphocytes that express profound intracellular resistance to infection with HSV. Induced expression of these proteins occurs only in lymphocytes that inhibit viral replication very early in the growth cycle, prior to the onset of alpha-protein synthesis. Expression of 62-kDa and 57-kDa proteins is not induced in lymphocytes that are permissive or partially permissive to infection with HSV.  相似文献   

9.
Wilkinson DE  Weller SK 《IUBMB life》2003,55(8):451-458
In many organisms the processes of DNA replication and recombination are closely linked. For instance, in bacterial and eukaryotic systems, replication forks can become stalled or damaged, in many cases leading to the formation of double stranded breaks. Replication restart is an essential mechanism in which the recombination and repair machinery can be used to continue replication after such a catastrophic event. DNA viruses of bacteria such as lambda and T4 also rely heavily on DNA recombination to replicate their genomes and both viruses encode specialized gene products which are required for recombination-dependent replication. In this review, we examine the linkage between replication and recombination in the eukaryotic pathogen, Herpes Simplex Virus Type 1 (HSV-1). The evidence that recombination plays an intrinsic role in HSV-1 DNA replication and the infection process will be reviewed. We have recently demonstrated that HSV-1 encodes two proteins which may be analogous to the lambda phage recombination system, Red(alpha) and beta. The HSV-1 alkaline nuclease, a 5' to 3' exonuclease, and ICP8, a single stranded DNA binding protein, can carry out strand annealing reactions similar to those carried out by the lambda Red system. In addition, evidence suggesting that host recombination proteins may also be important for HSV-1 replication will be reviewed. In summary, it is likely that HSV-1 infection will require both viral and cellular proteins which participate in various pathways of recombination and that recombination-dependent replication is essential for the efficient replication of viral genomes.  相似文献   

10.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication protein in the assembly of these proteins into prereplicative sites. We observed that four replication proteins, UL5, UL8 UL52, and UL9, are necessary for the localization of ICP8 (UL29) to prereplicative sites natural infection conditions. Likewise, four of the seven viral DNA replication proteins, UL5, UL52, UL9, and ICP8, are necessary for the localization of the viral DNA polymerase to prereplicative sites. On the basis of these results, we present a model for prereplicative site formation in infected cells in which the helicase-primase components (UL5, UL8, and UL52), the origin-binding protein (UL9), and the viral single-stranded DNA-binding protein (ICP8) assemble together to initiate the process. This is followed by the recruitment of the viral polymerase into the structures, a step facilitated by the polymerase accessory protein, UL42. Host cell factors can apparently substitute for some of these viral proteins under certain conditions, because the viral protein requirements for prereplicative site formation are reduced in transfected cells and in infected cells treated with drugs that inhibit DNA synthesis.  相似文献   

11.
Activated macrophages exhibit extrinsic antiviral activity (inhibition of virus replication in other cells) which may involve mechanisms similar to macrophage antitumor activity or macrophage-mediated immunosuppression. Peritoneal macrophages elicited in mice by Corynebacterium parvum vaccine suppressed the growth of herpes simplex virus (HSV) in infected cells by an interferon-independent mechanism. This was demonstrated by expression of activity against HSV-infected xenogeneic (Vero) cells. Culture supernatant fluids also did not mediate antiviral activity, and did not contain detectable levels of interferon (< 3 IU/ml). Moreover, antiviral activity was not affected by the presence of anti-mouse interferon IgG. Antiviral activity was expressed at 12–16 hr after infection, at the end of the first cycle of virus replication. Cell contact was required for optimal activity. No enhanced adsorption or phagocytosis of HSV by C. parvum macrophages could be detected nor was macrophage cytotoxicity responsible for the activity. Cytotoxicity (51Cr release) by macrophages for virus infected cells was low (< 6% specific cytotoxicity), and was not significantly higher with C. parvum macrophages than with resident macrophage controls. Although C. parvum macrophages were not cytotoxic at the macrophage-host cell ratio employed, they did significantly inhibit uptake of [3H]leucine by the host Vero cells. This suggests that inhibition of host cell metabolism by the macrophage, similar to macrophage immunosuppression, may be responsible for the antiviral activity in this system.  相似文献   

12.
A complex which is active in in vitro synthesis of adeno-associated virus (AAV) DNA was solubilized from Vero cells that were co-infected with AAV and either adenovirus (Ad5) or a herpes simplex virus type 1 (HSV-1) as the helper virus. The complexes from the Ad5 and HSV-1-infected cells sedimented at 23 S and 28 S, respectively. The optimal conditions for in vitro DNA synthesis for the two types of complex using the endogenous AAV template and the endogenous DNA polymerase, differed with respect to the effect of KCl and K2SO4 concentration. In addition the complex from HSV-1-infected cells, but not that from Ad5-infected cells, was inhibited by phosphonoacetic acid. Thus, the two complexes appear to contain different DNA polymerase activities. This was verified by phosphocellulose chromatography of the DNA polymerases solubilized from the isolated complexes. The major activity in the complex from HSV-1 infected cells was the HSV-induced DNA polymerase with lesser amounts of cellular DNA polymerase alpha and gamma or both. The complex from the Ad5-infected cells contained mainly a cellular DNA polymerase gamma.  相似文献   

13.
14.
15.
Human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of herpes simplex virus type 1 (HSV-1). A delay in HSV replication of 15 h as well as a consistent, almost 3 log inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 h after superinfection were observed compared with controls infected with HSV alone. Treatment of HCMV-infected HEL cells with cycloheximide (100 micrograms/ml) for 3 or 24 h, conditions known to result in accumulation of HCMV immediate-early and early mRNA, was demonstrated effective in blocking HCMV protein synthesis, as shown by immunoprecipitation with HCMV antibody-positive polyvalent serum. Cycloheximide treatment of HCMV-infected HEL cells and removal of the cycloheximide block before superinfection inhibited HSV-1 replication more efficiently than non-drug-treated superinfected controls. HCMV DNA-negative temperature-sensitive mutants restricted HSV as efficiently as wild-type HCMV suggesting that immediate-early and/or early events which occur before viral DNA synthesis are sufficient for inhibition of HSV. Inhibition of HSV-1 in HCMV-infected HEL cells was unaffected by elevated temperature (40.5 degrees C). However, prior UV irradiation of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HSV-2 replication was similarly inhibited in HCMV-infected HEL cells. However, replication of adenovirus, another DNA virus, was not restricted in these cells under the same conditions. Superinfection of HCMV-infected HEL cells with HSV-1 labeled with [3H]thymidine provided evidence that the labeled virus could penetrate to the nucleus of cells after superinfection. Evidence for penetration of superinfecting HSV into HCMV-infected cells was also provided by blot hybridization of HSV DNA synthesized in cells infected with HSV alone versus superinfected cell cultures at 0 and 48 h after superinfection. In addition, superinfection with vesicular stomatitis virus ruled out a role for interferon in restriction of HSV replication in this system.  相似文献   

16.
Herpesviruses are helper viruses for productive adeno-associated virus (AAV) replication. To analyze the herpes simplex virus type 1 (HSV-1) functions mediating helper activity, we coinfected HeLa cells with AAV type 2 (AAV-2) and different HSV-1 mutants defective in individual HSV replication genes. AAV replication was fully accomplished in the absence of HSV DNA replication and thus did not require expression of late HSV genes. In addition, HSV mutants lacking either the origin-binding protein or the functional DNA polymerase fully maintained the capacity to replicate AAV. Cotransfection of the cloned, replication-competent AAV-2 genome together with the seven HSV replication genes (UL5, UL8, UL9, UL29, UL30, UL42, and UL52) led to productive AAV replication. Cotransfections with different combinations of these genes demonstrated that a subset of four of them, coding for the HSV helicase-primase complex (UL5, UL8, UL52) and the major DNA-binding protein (UL29), was already sufficient to mediate the helper effect. Thus, the HSV helper activity for productive AAV replication seems to consist of DNA replication functions. This appears to be different from the helper effect provided by adenovirus, which predominantly modulates AAV gene regulation.  相似文献   

17.
Newcomb WW  Homa FL  Brown JC 《Journal of virology》2005,79(16):10540-10546
DNA enters the herpes simplex virus capsid by way of a ring-shaped structure called the portal. Each capsid contains a single portal, located at a unique capsid vertex, that is composed of 12 UL6 protein molecules. The position of the portal requires that capsid formation take place in such a way that a portal is incorporated into one of the 12 capsid vertices and excluded from all other locations, including the remaining 11 vertices. Since initiation or nucleation of capsid formation is a unique step in the overall assembly process, involvement of the portal in initiation has the potential to cause its incorporation into a unique vertex. In such a mode of assembly, the portal would need to be involved in initiation but not able to be inserted in subsequent assembly steps. We have used an in vitro capsid assembly system to test whether the portal is involved selectively in initiation. Portal incorporation was compared in capsids assembled from reactions in which (i) portals were present at the beginning of the assembly process and (ii) portals were added after assembly was under way. The results showed that portal-containing capsids were formed only if portals were present at the outset of assembly. A delay caused formation of capsids lacking portals. The findings indicate that if portals are present in reaction mixtures, a portal is incorporated during initiation or another early step in assembly. If no portals are present, assembly is initiated in another, possibly related, way that does not involve a portal.  相似文献   

18.
After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  相似文献   

19.
20.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号