首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete genome of the bacterial pathogen Pseudomonas aeruginosa has now been sequenced, allowing gene deletion, one of the most frequently used methods in gene function study, to be fully exploited. In this study, we combine the sacB-based negative selection system with a cre-lox antibiotic marker recycling method. This methodology allows allelic exchange between a target gene and a gentamicin cassette flanked by the two lox sequences. A tetracycline plasmid expressing the cre recombinase is then introduced in the mutant strain to catalyze the excision of the lox-flanked resistance marker. We demonstrate here the efficiency of the combination of these two methods in P. aeruginosa by successively deleting ExoS and ExoT, which are two genetically independent toxins of the type-three secretion system (TTSS). This functional cre-lox recycling antibiotic marker system can create P. aeruginosa strains with multiple mutations without modifying the antibiotic resistance profile when compared to the parental strain.  相似文献   

2.
The nucleotide recognition sequence for the restriction-modification enzyme of Escherichia coli A (EcoA) has been determined to be GAG-7N-GTCA. This sequence is fairly similar, but distinctly different from the two other type I restriction enzyme recognition sites known for E. coli B and E. coli K12, respectively. N6-adenosine methylation has been observed at nucleotide positions 2 and 12 within that sequence after modification by EcoA. As a reference point for mapping the single EcoA site in lambda, the position of lambda point mutation Oam29 has been determined also.  相似文献   

3.
J A Fyfe  J K Davies 《Gene》1990,93(1):151-156
The nucleotide sequence of the recA gene of Neisseria gonorrhoeae MS11 has been determined. The product of this gene can act as a recombinase in Escherichia coli, but does so with a decreased efficiency, probably because of the formation of mixed multimers with the equivalent E. coli protein.  相似文献   

4.
The gene for the major phosphofructokinase enzyme in Escherichia coli, pfkA, has been sequenced. Comparison of the amino acid sequence with other phosphofructokinases showed that this enzyme is related to the Bacillus stearothermophilus and rabbit muscle enzymes, but is different from the second, minor phosphofructokinase found in E. coli. The region which has been sequenced comprises the complete pfkA--tpi interval on the E. coli genetic map. Two other genes have been identified from the nucleotide sequence: a gene for a periplasmic sulphate-binding protein, sbp, and for a membrane-bound enzyme, CDP-diglyceride hydrolase, cdh. This establishes the complete gene arrangement in this region as pfkA-sbp-cdh-tpi. The pfkA gene has been subcloned into a high-copy-number plasmid under the control of a strong, chimaeric promoter which arose as an artefact in the construction of the plasmid gene bank from which the original pfkA recombinant was isolated. A specialised recombinant has been constructed which carries a 1.4 X 10(3)-nucleotide insert containing just the pfkA gene flanked by two HindIII recognition sites providing a simple system for the recloning of this gene into different vectors. This recombinant expresses the enzyme at high levels (40-50% of total cell protein is active, soluble phosphofructokinase). This expression system is now being used to study the enzyme using 'reverse genetics'.  相似文献   

5.
DNA重组酶FLP存在于酵母2μ质粒上,能识别34bp的FRT位点,并根据2个FRT位点的相对方向完成位点间DNA序列的交换、重组、删除与逆转,在现代分子生物学理论研究与基因工程技术开发中具有广泛应用。构建了在原核大肠杆菌中高效表达FLP重组酶的表达载体pQE32-flpe并建立起相应的原核高效表达体系,在原核细菌大肠杆菌M15菌株中实现FLP酶蛋白的高效表达,同时建立了相应的纯化方法。纯化时先用硫酸铵沉淀法富集FLP酶蛋白,经透析脱盐后再用镍离子鳌合微柱(0.5~1.0mL)亲合层析梯度洗脱的方法获得纯化的FLP酶蛋白。通过构建含有2个方向相同的FRT序列位点的质粒pUC18-FRT-gfp-FRT和含有1个FRT位点的表达载体pET30a-FRT,并分别以其为底物来检测FLP重组酶的删除、交换与重组功能的活性。结果表明,该方法不仅能有效表达FLP酶蛋白,并能行之有效地纯化FLP酶蛋白,以及检测纯化的FLP酶蛋白对DNA序列的删除、重组与交换功能。该方法简单易行并能获得有活性的FLP酶蛋白,为深入研究其机理以及研发相应的DNA重组技术提供重要参考。  相似文献   

6.
The gene encoding lipoamide dehydrogenase from Azotobacter vinelandii has been cloned in Escherichia coli. Fragments of 9-23 kb from Azotobacter vinelandii chromosomal DNA obtained by partial digestion with Sau3A were ligated into the BamHI site of plasmid pUC9. E. coli TG2 cells were transformed with the resulting recombinant plasmids. Screening for clones which produced A. vinelandii lipoamide dehydrogenase was performed with antibodies raised against the purified enzyme. A positive colony was found which produced complete chains of lipoamide dehydrogenase as concluded form SDS gel electrophoresis of the cell-free extract, stained for protein or used for Western blotting. After subcloning of the 14.7-kb insert of this plasmid the structural gene could be located on a 3.2-kb DNA fragment. The nucleotide sequence of this subcloned fragment (3134 bp) has been determined. The protein-coding sequence of the gene consists of 1434 bp (478 codons, including the AUG start codon and the UAA stop codon). It is preceded by an intracistronic region of 85 bp and the structural gene for succinyltransferase. A putative ribosome-binding site and promoter sequence are given. The derived amino acid composition is in excellent agreement with that previously published for the isolated enzyme. The predicted relative molecular mass is 50223, including the FAD. The overall homology with the E. coli enzyme is high with 40% conserved amino acid residues. From a comparison with the three-dimensional structure of the related enzyme glutathione reductase [Rice, D. W., Schultz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496], it appears that essential residues in all four domains have been conserved. The enzyme is strongly expressed, although expression does not depend on the vector-encoded lacZ promoter. The cloned enzyme is, in all the respects tested, identical with the native enzyme.  相似文献   

7.
A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined deletions in the glgX gene is reported here. The results show that the GlgX gene encodes an isoamylase-type debranching enzyme with high specificity for hydrolysis of chains consisting of three or four glucose residues. This specificity ensures that GlgX does not generate an extensive futile cycle during glycogen synthesis in which chains with more than four glucose residues are transferred by the branching enzyme. Disruption of glgX leads to overproduction of glycogen containing short external chains. These results suggest that the GlgX protein is predominantly involved in glycogen catabolism by selectively debranching the polysaccharide outer chains that were previously recessed by glycogen phosphorylase.  相似文献   

8.
9.
The ability to genetically remove specific components of various cell signalling cascades has been an integral tool in modern signal transduction analysis. One particular method to achieve this conditional deletion is via the use of the Cre-loxP system. This method involves flanking the gene of interest with loxP sites, which are specific recognition sequences for the Cre recombinase protein. Exposure of the so-called floxed (flanked by loxP site) DNA to this enzyme results in a Cre-mediated recombination event at the loxP sites, and subsequent excision of the intervening gene3. Several different methods exist to administer Cre recombinase to the site of interest. In this video, we demonstrate the use of an adenovirus containing the Cre recombinase gene to infect primary mouse embryonic fibroblasts (MEFs) obtained from embryos containing a floxed Rac1 allele1. Our rationale for selecting Rac1 MEFs for our experiments is that clear morphological changes can be seen upon deletion of Rac1, due to alterations in the actin cytoskeleton2,5. 72 hours following viral transduction and Cre expression, cells were stained using the actin dye phalloidin and imaged using confocal laser scanning microscopy. It was observed that MEFs which had been exposed to the adeno-Cre virus appeared contracted and elongated in morphology compared to uninfected cells, consistent with previous reports2,5. The adenovirus method of Cre recombinase delivery is advantageous as the adeno-Cre virus is easily available, and gene deletion via Cre in nearly 100% of the cells can be achieved with optimized adenoviral infection.  相似文献   

10.
Identifying and eliminating endogenous bacterial enzyme systems can significantly increase the efficiency of propagation of eukaryotic DNA in Escherichia coli. We have recently examined one such system which inhibits the propagation of lambda DNA rescued from transgenic mouse tissues. This rescue procedure utilizes lambda packaging extracts for excision of the lambda DNA from the transgenic mouse genome, as well as E. coli cells for subsequent infection and propagation. This assay, in combination with conjugal mating, P1 transduction, and gene cloning, was used to identify and characterize the E. coli locus responsible for this difference in efficiency. It was determined that the E. coli K-12 mcrB gene when expressed on a high-copy-number plasmid can cause a decrease in rescue efficiency despite the presence of the mcrB1 mutation, which inactivates the classic McrB restriction activity. (This mutation was verified by sequence analysis.) However, this McrB1 activity is not observed when the cloned mcrB1 gene is inserted into the E. coli genome at one copy per chromosome. A second locus was identified which causes a decrease in rescue efficiency both when expressed on a high-copy-number plasmid and when inserted into the genome. The data presented here suggest that this locus is mrr and that the mrr gene product can recognize and restrict cytosine-methylated sequences. Removal of this DNA region including the mrr gene from E. coli K-12 strains allows high rescue efficiencies equal to those of E. coli C strains. These modified E. coli K-12 plating strains and lambda packaging extract strains should also allow a significant improvement in the efficiency and representation of eukaryotic genomic and cDNA libraries.  相似文献   

11.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

12.
The gene for the MspI modification enzyme from Moraxella was cloned in Escherichia coli using the plasmid vector pBR322. Selection of transformants carrying the gene was based on the resistance of the modified plasmid encoding the enzyme to cleavage by MspI. Both chromosomal and plasmid DNA were modified in the selected clones. None of the clones obtained produced the cognate restriction enzyme which suggests that in this system the genes for the restriction enzyme and methylase are not closely linked. Crude cell extracts prepared from the recombinant strains, but not the host (E. coli HB101), contain an S-adenosylmethionine-dependent methyltransferase specific for the MspI recognition site, CCGG. Production of the enzyme is 3-4-fold greater in the transformants than in the original Moraxella strain. 5-Methylcytosine was identified as the product of the reaction chromatographically. The outer cytosine of the recognition sequence, *CCGG, was shown to be the site of methylation by DNA-sequencing methods. This modification blocks cleavage by both MspI and its isoschizomer HpaII. HpaII, but not MspI, is able to cleave the unmethylated strand of a hemimethylated substrate. The relevance of these results to the use of MspI and HpaII to analyze patterns of methylation in genomic DNA is discussed.  相似文献   

13.
14.
The DNA fragment identical to the right shoulder of the inverted repeat from the par-region of ColE1 plasmid has been synthesized chemically. It is shown to participate in the plasmid multimers resolution and to define the stable inheritance of the plasmid pKS1 containing the fragment in Escherichia coli C600 cells as well as in the multirecombinogenic strain Escherichia coli JC8679. The efficiency of the fragments functioning in Escherichia coli JC8679 is not enough for resolution of all forms of oligomeric pKS1 DNA. The site for recombinase action is found to be located in the synthesized oligonucleotide. However, some extra sequences of DNA located within the region of inverted repeat are necessary for maximally efficient functioning of the recombinase, the enzyme participating in plasmid multimers resolution.  相似文献   

15.
The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.  相似文献   

16.
Mobile group II introns have been used to develop a novel class of gene targeting vectors, targetrons, which employ base pairing for DNA target recognition and can thus be programmed to insert into any desired target DNA. Here, we have developed a targetron containing a retrotransposition-activated selectable marker (RAM), which enables one-step bacterial gene disruption at near 100% efficiency after selection. The targetron can be generated via PCR without cloning, and after intron integration, the marker gene can be excised by recombination between flanking Flp recombinase sites, enabling multiple sequential disruptions. We also show that a RAM-targetron with randomized target site recognition sequences yields single insertions throughout the Escherichia coli genome, creating a gene knockout library. Analysis of the randomly selected insertion sites provides further insight into group II intron target site recognition rules. It also suggests that a subset of retrohoming events may occur by using a primer generated during DNA replication, and reveals a previously unsuspected bias for group II intron insertion near the chromosome replication origin. This insertional bias likely reflects at least in part the higher copy number of origin proximal genes, but interaction with the replication machinery or other features of DNA structure or packaging may also contribute.  相似文献   

17.
The gene which encodes the mannitol-specific enzyme III (EIIImtl) of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus, has been cloned. Genomic libraries of S. carnosus DNA were constructed using the expression vector pUC19 and EIIImtl-producing clones were identified using rabbit polyclonal antiserum. A 700-bp Dde I fragment, containing the complete gene encoding EIIImtl, was sequenced by the dideoxy chain-termination technique. Upstream from the ORF for EIIImtl one can find a sequence analogous to that of the Escherichia coli promoter. This region acts as a strong promoter when subcloned into the promoter test vector M13HDL17. EIIImtl was overproduced using the inducible T7 polymerase system and purified to homogeneity. Amino acid sequence comparison confirmed a 38% similarity to the hydrophilic enzyme-III-like portion of enzyme IImtl of E. coli. There is also a 36% similarity to the N terminus of the fructose-specific phospho-carrier protein from E. coli.  相似文献   

18.
19.
The D-alanine-activating enzyme (Dae; EC 6.3.2.4) encoded by the dae gene from Lactobacillus casei ATCC 7469 is a cytosolic protein essential for the formation of the D-alanyl esters of membrane-bound lipoteichoic acid. The gene has been cloned, sequenced, and expressed in Escherichia coli, an organism which does not possess Dae activity. The open reading frame is 1,518 nucleotides and codes for a protein of 55.867 kDa, a value in agreement with the 56 kDa obtained by electrophoresis. A putative promoter and ribosome-binding site immediately precede the dae gene. A second open reading frame contiguous with the dae gene has also been partially sequenced. The organization of these genetic elements suggests that more than one enzyme necessary for the biosynthesis of D-alanyl-lipoteichoic acid may be present in this operon. Analysis of the amino acid sequence deduced from the dae gene identified three regions with significant homology to proteins in the following groups of ATP-utilizing enzymes: (i) the acid-thiol ligases, (ii) the activating enzymes for the biosynthesis of enterobactin, and (iii) the synthetases for tyrocidine, gramicidin S, and penicillin. From these comparisons, a common motif (GXXGXPK) has been identified that is conserved in the 19 protein domains analyzed. This motif may represent the phosphate-binding loop of an ATP-binding site for this class of enzymes. A DNA fragment (1,568 nucleotides) containing the dae gene and its putative ribosome-binding site has been subcloned and expressed in E. coli. Approximately 0.5% of the total cell protein is active Dae, whereas 21% is in the form of inclusion bodies. The isolation of this minimal fragment without a native promoter sequence provides the basis for designing a genetic system for modulating the D-alanine ester content of lipoteichoic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号