首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Microphytoplankton populations were studied in shallow coastal water (<60 m) near the Brazilian Antarctic Station Comandante Ferraz (EACF) and three reference areas in Admiralty Bay in early and late summer (2002–2003). Phytoplankton was diverse (113 taxa), but not abundant (103 cells l−1). The highest abundances (>104 cells l−1) were caused by pennate benthic diatoms (Fragilaria striatula Lyngbye) that occurred mainly in early summer, associated with the presence of ice. In late summer, when the water temperature (−0.4 to 1.5°C), salinity (34 to 35), and phosphate (2.6 to 4.5 μmol l−1) were highest and the dissolved oxygen was lowest (6.4 to 2.9 ml l−1), centric diatoms (Thalassiosira spp.) were more abundant, suggesting an influence of oceanic waters. Phytoplankton abundance (≤102 cells l−1) and chlorophyll a concentrations (0.22 μg l−1) were lowest close to EACF. Pennate diatoms were dominant close to shore and in surface waters elsewhere, probably because of ice melting or sediment resuspension caused by water mixing.  相似文献   

2.
Summary A procedure for the regeneration of complete plantlets of Tylophora indica from cultured leaf callus via somatic embryogenesis is described. Callus induction from leaf explants was on Murashige and Skoog (MS) medium with different concentrations of 2,4-dichlorophenoxyacetic acid (2.4-D; 0.03–3 mg l−1; 0.0–13.56 μM) and kinetin (Kn; 0.01 mg l−1; 0.05 μM). The best response for callus induction was obtained on MS medium containing 2 mg l−1 (9.04 μM) 2.4-D and 0.01 mg l−1 (0.05 μM) Kn. After two subeultures on the same medium the embryogenic callus was transferred to MS medium with different concentrations of the cytokinin, 6-benzyladenine (0.5–3 mg l−1; 2.22–13.32 μM) and 2-isopentenyladenine (2ip; 0.53 mg l−1; 2.46–14.76 μM) along with 0.01 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for somatic embryo development and maturation. MS medium with 2 mg l−1 (9.84 μM) 2ip produced the maximum number of mature somatic embryos. The mature embryos were bipolar and on transfer to MS basal medium produced complete plantlets. After hardening the regenerants were planted in the Gudalur forests of Western Ghats. Total DNA was extracted from 14 regenerants and the mother plant. Random amplified polymorphic, DNA (RAPD) analysis was carried out using 20 arbitrary oligonucleotides. The amplification products were monomorphic among all the plants revealing the genetic homogeneity and true-to-type nature of the regenerants.  相似文献   

3.
Summary Creeping bluestem (Schizachyrium scoparium (Michx.) Nash var. stoloniferum (Nash) J. Wipff) embryogenic callus growing on solid medium was used to establish a cell suspension culture in Murashige and Skoog (MS) basal medium supplemented with 1.5 mg l−1 (6.8 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), 0.2 mg l−1 (0.88 μM) 6-benzylaminopurine (BA), 0.5 mg l−1 (1.4 μM) zeatin, 0.2 mg l−1 (0.58 μM) gibberellic acid (GA3), and 10% (v/v) of coconut water (CW). Pro-embryos from suspension culture matured on semi-solid MS medium in about 18 wk, and were then cultured on semi-solid MS medium without growth regulators for 2–3 wk. Shoots were regenerated on MS basal medium supplemented with 3.0 mg L−1 (13.6 μM) 2,4-D, 1.0 mg l−1 (4.4 μM) BA, 1.0 mg l−1 (2.9 μM) GA3, 0.5 mg l−1 (2.7 μM) 1-naphthaleneacetic acid (NAA), 500 mg l−1 easein hydrolysate, and 10% (v/v) CW. Rooted plantlets were successfully accelimatized to greenhouse and outdoor conditions. Using this protocol, it would be possible to produce at least 1300 fully acclimatized plantlets annually.  相似文献   

4.
An aerobic microbial consortium constructed by the combination of Rhodotorula mucilaginosa Z1, Streptomyces albidoflavus Z2 and Micrococcus luteus Z3 was immobilized in polyurethane foam and its ability to degrade nitrobenzene was investigated. Batch experimental results showed that polyurethane-foam-immobilized cells (PFIC) more efficiently degrade 200–400 mg l−1 nitrobenzene than freely suspended cells (FSC). Kinetics of nitrobenzene degradation by PFIC was well described by the Andrews equation. Compared with FSC, PFIC exhibited better reusability (over 100 times) and tolerated higher shock-loadings of nitrobenzene (1,000 mg l−1). Moreover, In the presence of salinity (≤5% NaCl, w/v), phenol (≤150 mg l−1) and aniline (≤50 mg l−1), respectively, degradation efficiency of nitrobenzene by PFIC reached over 95%. Even in the presence of both 100 mg l−1 phenol and 50 mg l−1 aniline, over 75% nitrobenzene was removed by PFIC in 36 h. Therefore, the immobilization of the defined consortium in polyurethane foam has application potential for removing nitrobenzene in industrial wastewater treatment system.  相似文献   

5.
 In this research, a medium was developed that would stimulate multiple shoot initiation from shoot apex explants of Hibiscus cannabinus L. (kenaf). Adventitious shoot formation on a shoot induction media supplemented with combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) (0, 0.5, 2.3 μmol·l–1) and thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) (0, 1, 5, 20 μmol·l–1) was evaluated. Multiple shoot induction medium with 1 μmol·TDZ l–1 resulted in the highest number of regenerated shoots per explant for all three kenaf cultivars tested (Tainung 1, Tainung 2, and Everglades 71). The 2,4-D did not enhance multiple shoot formation. Additionally, kenaf cultivars 7N and SF459 also produced multiple shoots on the induction medium with 1 μmol·TDZ l–1. Multiple shoot clumps formed after 2 weeks in culture without callus formation. Shoots elongated and rooted within 2 weeks after subculture on a plant growth regulator-free medium. A histological study demonstrated the de novo regeneration of shoots from the shoot apex. Received: 2 February 2000 / Revision received: 30 March 2000 / Accepted: 22 June 2000  相似文献   

6.
Summary Callus of Phalaenopsis Nebula was induced from seed-derived protocorms on 1/2 Murashige and Skoog (MS) basal medium plus 0–1.0 mg l−1 (0–4.52 μM) N-phenyl-N′-1,2,3,-thiadiazol-5-yl urea (TDZ) and/or 0–10 mg l−1 (0–45.24 μ M) 2,4-dichlorophenoxyacetic acid (2,4-D). Protocorms 2 mo. old performed better than 1-mo.-old protocorms for callus induction. More calluses formed on 1/2 MS basal medium supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. These calluses could be maintained by subculturing every month with basal medium supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.5 mg l−1 (2.26 μM) 2,4-D. Protocorm-like bodies were formed, and plants regenerated from these calluses on 1/2 MS basal medium alone or supplemented with 0.1–1.0 mg l−1 (0.45–4.52 μM) TDZ. Plantlets were then potted on sphagnum moss in the greenhouse and grew well. No chromosomal abnormalities were found among the root-tip samples of 21 of the regenerated plantlets that were successfully acclimatized.  相似文献   

7.
Songbirds are widely studied to investigate the hormonal control of behavior. However, little is known about the effects of steroids on neurotransmission in these birds. We used electrophysiological and pharmacological techniques to characterize γ-aminobutyric acid (GABA) type A receptors (GABAA) of primary cultured telencephalic and hippocampal neurons from developing zebra finches. Additionally, their modulation by 17β-estradiol(E2), 5α- and 5β-dihydrotestosterone (DHT), 5α- and 5β-pregnan-3α-ol-20-one, and corticosterone was examined. Whole-cell GABA-evoked currents were inhibited by picrotoxin (10 μmol l−1) and bicuculline methiodide (10 μmol l−1) and potentiated by pentobarbital (100 μmol l−1) and propofol (3 μmol l−1). Loreclezole (10 μmol l−1) potentiated GABA-evoked currents, suggesting the presence of β2, β3 and/or β4 subunits. Diazepam (1 μmol l−1) potentiated currents, while Zn2+ (1 μmol l−1) caused no inhibition, indicating the presence of γ subunits. 5α- and 5β-Pregnan-3α-ol-20-one (100 nmol l−1) potentiated currents, whereas E2 (1 μmol l−1), 5α- and 5β-DHT (1 μmol l−1), and corticosterone (10 μmol l−1) had no detectable effect. We conclude that zebra finch telencephalic and hippocampal GABAA receptors include α, β, and γ subunits and are similar to their mammalian counterparts in both their biophysical and pharmacological properties. Additionally, GABA-evoked currents are greatly potentiated by 5α- and 5β-pregnan-3α-ol-20-one but show little or no acute modulation by sex steroids or corticosterone. Accepted: 12 November 1997  相似文献   

8.
Summary As a first step towards applying biotechnology to blue grama, Bouteloua gracilis (H. B. K.) Lag. ex Steud., we have developed a regenerable tissue culture system for this grass. Shoot apices were isolated from 3-d-old seedlings and cultured in 15 different growth regulator formulations combining 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (4-amino-3, 5,6-trichloropicolinic acid), N6-benzyladenine (BA) or adenine (6-aminopurine). The highest induction of organogenic callus was obtained with formulations containing 1 mg l−1 (4.52 μM) 2,4-D plus 0.5 mg l−1 (2.22 μM) BA. and 2 mg l−1 (8.88 μM) BA plus 1 mg l−1 (4.14 μM) Picloram with or without 40 mg l−1 (296.08 μM) adenine. Lower frequencies of induction were obtained for embryogenic as compared to organogenic callus. The most efficient treatments for induction of embryogenic callus contained 2 mg l−1 (9.05 μM) 2,4-D combined with 0.25 (1.11 μM) or 0.50 mg l−1 (2.22 μM) BA, or 1 mg l−1 (4.52 μM) 2,4-D with 0.50 mg l−1 (2.22 μM) BA. Regeneration was achieved in hormonefree Murashige anmd Skoog (MS) medium, half-strength MS medium or MS medium plus 1 mg l−1 (1.44 μM) gibberellic acid. The number of plantlets regenerated per 500 mg callus fresh weight on MS medium ranged from 9 for 2 mg l−1 (9.05 μM) 2,4-D to 62.2 for induction medium containing 2 mg l−1 (8,28 μM) Picloram, 1 mg l−1 (4.44 μM) BA and 40 mg l−1 (296.08 μM) adenine. Regnerated plants grown in soil under greenhouse conditions reached maturity and produced seeds.  相似文献   

9.
 Efficacy of silver thiosulfate (STS) in reducing ethylene-induced culture abnormalities during minimal growth conservation of microplants was studied in seven potato (Solanum tuberosum L.) genotypes. Different concentrations of STS (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 μg ml–1) were tested in minimal growth medium based on MS medium supplemented with 20 g l–1 mannitol and 40 g l–1 sucrose. STS improved the microplant growth and reduced the culture abnormalities during prolonged maintenance of potato shoot cultures in vitro. The beneficial effect of STS was most prominent for number of green leaves per microplant and leaf senescence. After 16 months of storage, desirable microplant growth was observed in cultures conserved in medium containing 6.0–9.0 μg ml–1 STS. The profile of the peroxidase isozymes of conserved cultures did not show any apparent genetic variation due to the presence of STS in the conservation medium. Received: 2 September 1998 / Revision received: 20 November 1998 / Accepted: 12 December 1998  相似文献   

10.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

11.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

12.
The ability of a Rhodococcus aetherovorans strain, BCP1, to grow on butane and to degrade chloroform in the 0–633 μM range (0–75.5 mg l−1) via aerobic cometabolism was investigated by means of resting-cell assays. BCP1 degraded chloroform with a complete mineralization of the organic Cl. The resulting butane and chloroform maximum specific degradation rates were equal to 118 and 22 μmol , respectively. Butane inhibition on chloroform degradation was satisfactorily interpreted by means of a model of competitive inhibition, with an inhibition constant equal to 38 % of the estimated butane half-saturation constant, whereas chloroform (at 11 μM) did not inhibit butane utilization. Acetylene (1,720 μM) induced an almost complete inactivation of the degradation of both butane and chloroform, indicating that the studied cometabolic process is mediated by a monooxygenase enzyme. BCP1 proved capable of degrading vinyl chloride and 1,1,2-trichloroethane, but not 1,2-trans-dichloroethylene. BCP1 could grow on the intermediates of the most common butane metabolic pathways and on the aliphatic hydrocarbons from ethane to n-heptane. After growth on n-hexane, it was able to deplete chloroform (13 μM) with a degradation rate higher than that obtained, at the same chloroform concentration, after growth on butane.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

14.
Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) has been widely attempted but commercial exploitation of this method is limited by heavy losses during the hardening procedures. In the present study, optimization of time of harvesting (spring and early summer) of microshoots, shoot size, soil pH (4.0–6.4), plant growth regulator treatment (IBA; 500 mg l-1, 30 min) CO2 (9.09/10×10−5 mol l-1 to 10.22/10×10-5 mol l-1 and 20/11×10−5 mol l-1 to 80/13×10−7 mol l-1) enrichment and light (15 μ mol m-2 s-1) conditions in specially designed hardening chambers, made a significant impact on the percent of success for hardening. Following the standardized procedure, up to 71.6% root induction and 73% survival could be achieved. Successful field transfer was also accomplished. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

16.
Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0–50 g l−1 in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51–0.74 to 0.20–0.22 mg mg−1 and the maximum specific rate of substrate utilization, declined from 0.25–0.42 to 0.07–0.11 h−1, as the salinity increased from 0 to 50 NaCl g l−1. The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K T(S), were 22.7–29.7 g l−1 for substrate degradation and K T(μ), 13.0–19.0 g l−1, for biomass formation. The calculated ratios for the bacterial maintenance rate, m S, to further indicated that the percentage energy spent on maintenance increased from 19–24 to 86–91% as salinity level increased from 0 to 50 g l−1. These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.  相似文献   

17.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

18.
Summary Vegetatively propagated plantlets of six rose cultivars were induced to flower in vitro on media containing full-strength Murashige and Skoog (MS) inorganic salts, Gamborg's B5 organic elements with 400 mg l−1 myo-inositol, and different phytohormone combinations of 6-benzyladenine (BA) with α-naphthaleneacetic acid (NAA); thidiazuron (TDZ) with NAA; and zeatin (ZT) with NAA. The most efficient flower bud induction (49.1% and 44.1%) was obtained on media supplemented with 0.5 mg l−1 (2.27 μM) TDZ and 0.1 mg l−1 (0.54 μM) NAA or 0.5 mg l−1 (2.28 μM) ZT and 0.1 mg l−1 (0.54 μM) NAA for cultivar Orange Parade. Scanning electron microscopy (SEM) showed that in vitro flower bud induction occurred mostly between 15 and 30 d in induction medium through the normal flower development processes. With TDZ and ZT as the best choice for flower induction in all six cultivars tested, different rose cultivars varied in their responses to phytohormone treatments. Our study also revealed that the total time from original culture and subculture time before flower induction were two very important factors for in vitro flower induction. Plantlets 156–561 d from original culture and subcultured for 45 d were the best for flower induction. These authors contributed equally to this work.  相似文献   

19.
Summary A simple, efficient protocol for in vitro micropropagation of guayule is reported. Shoot cultures were maintained on MS (Murashige and Skoog, 1962) medium supplemented with 1.0 mg l−1 (4.4 μM) 6-benzylaminopurine and 0.025 mg l−1 (0.3 μM) α-naphthaleneacetic acid. Excised shoots were treated for 14–18 h with 100 mg l−1 (492.1 μM) indole-3-butyric acid in 0.5 x MS salts to induce rooting. The shoots were subsequently inserted into cellulose plugs which were packed in sterile, ventilated plastic culture vessels and moistened with 0.5 x MS medium without growth regulators. Use of cellulose plugs, liquid medium and ventilated culture vessels facilitated acclimation. Rooted shoots were transplanted into potting medium and acclimated to greenhouse conditions by covering with a cloche for 2 d, followed by daily watering for the first week. Any mention of trade names or commercial products in this report is for informational purposes only and does not imply endorsement by the U.S. Department of Agriculture or the Agricultural Research Service.  相似文献   

20.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号