首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that DNA methylation is involved in the mechanism of X inactivation, the process by which equivalence of levels of X-linked gene products is achieved in female (XX) and male (XY) mammals. In this study, Southern blots of female and male DNA digested with methylation-sensitive restriction endonucleases and hybridized to various portions of the cloned mouse hprt gene were compared, and sites within the mouse hprt gene were identified that are differentially methylated in female and male cells. The extent to which these sites are methylated when carried on the active and inactive X chromosomes was directly determined in a similar analysis of DNA from clonal cell lines established from a female embryo derived from a mating of two species of mouse, Mus musculus and Mus caroli. The results revealed two regions of differential methylation in the mouse hprt gene. One region, in the first intron of the gene, includes four sites that are completely unmethylated when carried on the active X and extensively methylated when carried on the inactive X. These same sites are extensively demethylated in hprt genes reactivated either spontaneously or after 5-azacytidine treatment. The second region includes several sites in the 3' 20kilobases of the gene extending from exon 3 to exon 9 that show the converse pattern; i.e., they are completely methylated when carried on the active X and completely unmethylated when carried on the inactive X. At least one of these sites does not become methylated after reactivation of the gene. The results of this study, together with the results of previous studies by others of the human hprt gene, indicate that these regions of differential methylation on the active and inactive X are conserved between mammalian species. Furthermore, the data described here are consistent with the idea that at least the sites in the 5' region of the gene play a role in the X inactivation phenomenon and regulation of expression of the mouse hprt gene.  相似文献   

2.
We have been developing a rapid and convenient assay for the measurement of DNA damage and repair in specific genes using quantitative polymerase chain reaction (QPCR) methodology. Since the sensitivity of this assay is limited to the size of the DNA amplification fragment, conditions have been found for the quantitative generation of PCR fragments from human genomic DNA in the range of 6-24 kb in length. These fragments include: (1) a 16.2 kb product from the mitochondrial genome; (2) 6.2, 10.4 kb, and 15.4 kb products from the hprt gene, and (3) 13.5, 17.7, 24.2 kb products from the human beta-globin gene cluster. Exposure of SV40 transformed human fibroblasts to increasing fluences of ultraviolet light (UV) resulted in the linear production of photoproducts with 10 J/m(2) of UVC producing 0.085 and 0.079 lesions/kb in the hprt gene and the beta-globin gene cluster, respectively. Kinetic analysis of repair following 10 J/m(2) of UVC exposure indicated that the time necessary for the removal of 50% of the photoproducts, in the hprt gene and beta-globin gene cluster was 7.8 and 24.2 h, respectively. Studies using lymphoblastoid cell lines show very little repair in XPA cells in both the hprt gene and beta-globin locus. Preferential repair in the hprt gene was detected in XPC cells. Cisplatin lesions were also detected using this method and showed slower rates of repair than UV-induced photoproducts. These data indicate that the use of long targets in the gene-specific QPCR assay allows the measurement of biologically relevant lesion frequencies in 5-30 ng of genomic DNA. This assay will be useful for the measurement of human exposure to genotoxic agents and the determination of human repair capacity.  相似文献   

3.
4.
The induction of mutants at the heterozygous tk locus by X radiation was found to be dose-rate dependent in L5178Y-R16 (LY-R16) cells, but very little dose-rate dependence was observed in the case of strain L5178Y-S1 (LY-S1), which is deficient in the repair of DNA double-strand breaks. Induction of mutants by X radiation at the hemizygous hprt locus was dose-rate independent for both strains. These results are in agreement with the hypothesis that the majority of X-radiation-induced TK-/- mutants harbor multilocus deletions caused by the interaction of damaged DNA sites. Repair of DNA lesions during low-dose-rate X irradiation would be expected to reduce the probability of lesion interaction. The results suggest that in contrast to the TK-/- mutants, the majority of mutations at the hprt locus in these strains of L5178Y cells are caused by single lesions subject to dose-rate-independent repair. The vast majority of the TK-/- mutants of strain LY-R16 showed loss of the entire active tk allele, whether the mutants arose spontaneously or were induced by high-dose-rate or low-dose-rate X irradiation. The proportion of TK-/- mutants with multilocus deletions (in which the products of both the tk gene and the closely linked gk gene were inactivated) was higher in the repair-deficient strain LY-S1 than in strain LY-R16. However, even though the mutant frequency decreased with dose rate, the proportion of mutants showing inactivation of both the tk and gk genes increased with a decrease in dose rate. The reason for these apparently conflicting results concerning the effect of DNA repair on the induction of extended lesions is under investigation.  相似文献   

5.
6.
7.
Summary A defective hprt gene was corrected by homologous recombination in a lymphocyte cell line deficient in Hypoxanthine-phosphoribosyl-transferase activity (hprt). In a novel approach, only a fragment of a cDNA clone of the functional hprt gene was used to induce homologous recombination. The mutation that was corrected corresponds to a single base change in exon III of the hprt gene.Two transfection methods, electroporation and the previously unreported use of polyoma capsids containing only short DNA fragments, were able to induce the recombinational event. After transfection cells with a functional hprt gene were selected and homologous recombination events were identified using polymerase chain reaction.Double stranded fragments and both coding and non-coding single stranded fragments resulted in conversion to a functional gene.Analysis of the resulting hprt positive cells revealed that most cells had undergone a simple replacement reaction. Interestingly, however, some cells had lost an intron adjacent to the site of mutation. Potential mechanisms for this phenomenon, including the possible involvement of RNA in DNA repair, are discussed.  相似文献   

8.
DNA strand specificity for UV-induced mutations in mammalian cells.   总被引:29,自引:9,他引:20       下载免费PDF全文
The influence of DNA repair on the molecular nature of mutations induced by UV light (254 nm) was investigated in UV-induced hprt mutants from UV-sensitive Chinese hamster cells (V-H1) and the parental line (V79). The nature of point mutations in hprt exon sequences was determined for 19 hprt mutants of V79 and for 17 hprt mutants of V-H1 cells by sequence analysis of in vitro-amplified hprt cDNA. The mutation spectrum in V79 cells consisted of single- and tandem double-base pair changes, while in V-H1 cells three frameshift mutations were also detected. All base pair changes in V-H1 mutants were due to GC----AT transitions. In contrast, in V79 all possible classes of base pair changes except the GC----CG transversion were present. In this group, 70% of the mutations were transversions. Since all mutations except one did occur at dipyrimidine sites, the assumption was made that they were caused by UV-induced photoproducts at these sites. In V79 cells, 11 out of 17 base pair changes were caused by photoproducts in the nontranscribed strand of the hprt gene. However, in V-H1 cells, which are completely deficient in the removal of pyrimidine dimers from the hprt gene and which show a UV-induced mutation frequency enhanced seven times, 10 out of 11 base pair changes were caused by photoproducts in the transcribed strand of the hprt gene. We hypothesize that this extreme strand specificity in V-H1 cells is due to differences in fidelity of DNA replication of the leading and the lagging strand. Furthermore, we propose that in normal V79 cells two processes determine the strand specificity of UV-induced mutations in the hprt gene, namely preferential repair of the transcribed strand of the hprt gene and a higher fidelity of DNA replication of the nontranscribed strand compared with the transcribed strand.  相似文献   

9.
10.
11.
The mutation spectrum induced by UV light has been determined at the hprt locus for both cultured normal (AA8) and UV-sensitive (UV-5) Chinese hamster ovary cells to investigate the effect of DNA repair on the nature of induced mutations. DNA base-pair changes of 23 hprt mutants of AA8 and of 28 hprt mutants of UV-5 were determined by sequence analysis of in vitro amplified hprt cDNA. Almost all mutants in AA8 carried single-base substitutions, transitions and transversions accounting for 38% and 62% of the base changes, respectively. In contrast, in repair-deficient cells (UV-5) tandem and nontandem double mutations represented a considerable portion of the mutations observed (30%), whereas the vast majority of base-pair substitutions were GC greater than AT transitions (87%). Moreover, 5 splice mutants and 2 frameshift mutations were found in the UV-5 collection. In almost all mutants analyzed base changes were located at dipyrimidine sites where UV photoproducts could have been formed. In AA8 the photolesions causing mutations were predominantly located in the nontranscribed strand whereas a strong bias for mutation induction towards photolesions in the transcribed strand was found in UV-5. We hypothesize that preferential removal of lesions from the transcribed strand of the hprt gene accounts for the observed DNA strand specificity of mutations in repair-proficient cells. Furthermore, differences in the degree of misincorporation opposite a lesion for lagging and leading strand DNA synthesis may dictate the pattern of UV-induced mutations in the absence of DNA repair.  相似文献   

12.
Removal of ultraviolet light induced cyclobutane pyrimidine dimers (CPD) from active and inactive genes was analyzed in cells derived from patients suffering from the hereditary disease Cockayne's syndrome (CS) using strand specific probes. The results indicate that the defect in CS cells affects two levels of repair of lesions in active genes. Firstly, CS cells are deficient in selective repair of the transcribed strand of active genes. In these cells the rate and efficiency of repair of CPD are equal for the transcribed and the nontranscribed strand of the active ADA and DHFR genes. In normal cells on the other hand, the transcribed strand of these genes is repaired faster than the nontranscribed strand. However, the nontranscribed strand is still repaired more efficiently than the inactive 754 gene and the gene coding for coagulation factor IX. Secondly, the repair level of active genes in CS cells exceeds that of inactive loci but is slower than the nontranscribed strand of active genes in normal cells. Our results support the model that CS cells lack a factor which is involved in targeting repair enzymes specifically towards DNA damage located in (potentially) active DNA.  相似文献   

13.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

14.
Ornithine carbamoyl transferase (Oct) is an X-linked gene which exhibits tissue-specific expression. To determine whether methylation of specific CpG sequences plays a role in dosage compensation or tissue-specific expression of the gene, 13 potentially methylatable sites were identified over a 30-kilobase (kb) region spanning from approximately 15 kb upstream to beyond exon II. Fragments of the Mus hortulanus Oct gene were used as probes to establish the degree of methylation at each site. By considering the methylation status in liver (expressing tissue) versus kidney (nonexpressing tissue) from male and female mice, the active and inactive genes could be investigated on active and inactive X-chromosome backgrounds. One MspI site, 12 kb 5' of the Oct-coding region, was cleaved by HpaII in liver DNA from males but not in kidney DNA from males and thus exhibited complete correlation with tissue-specific expression of the gene. Six other sites showed partial methylation, reflecting incomplete correlation with tissue-specific expression.  相似文献   

15.
Effects of electron-beam irradiation on buccal-cell DNA   总被引:1,自引:0,他引:1  
Buccal cells were collected from 29 participants, by use of mouthwash rinses, and were split into equal aliquots, with one aliquot irradiated by electron-beam (E-beam) irradiation equivalent to the sterilizing dosage used by the U.S. Postal Service and the other left untreated. Aliquots were extracted and tested for DNA yields (e.g., TaqMan assay for quantifying human genomic DNA), genomic integrity, and amplification-based analysis of genetic variants (e.g., single-nucleotide polymorphisms [SNPs] and single tandem repeats [STRs]). Irradiated aliquots had lower median DNA yields (3.7 microg/aliquot) than untreated aliquots (7.6 microg/aliquot) (P<.0005) and were more likely to have smaller maximum DNA fragment size, on the basis of genomic integrity gels, than untreated aliquots (P<.0005). Irradiated aliquots showed poorer PCR amplification of a 989-bp beta-globin target (97% for weak amplification and 3% for no amplification) than untreated aliquots (7% for weak amplification and 0% for no amplification) (P<.0005), but 536-bp and 268-bp beta-globin targets were amplified from all aliquots. There was no detectable irradiation effect on SNP assays, but there was a significant trend for decreased detection of longer STRs (P=.01) in irradiated versus untreated aliquots. We conclude that E-beam irradiation reduced the yield and quality of buccal-cell specimens, and, although irradiated buccal-cell specimens may retain sufficient DNA integrity for some amplified analyses of many common genomic targets, assays that target longer DNA fragments (>989 bp) or require whole-genome amplification may be compromised.  相似文献   

16.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

17.
A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

18.
19.
Mutations in the hprt gene in T-lymphocyte clones isolated from primary cultures treated with the (+)-anti enantiomer of 7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE) in vitro, and from untreated control cultures, were characterized using polymerase chain reaction and direct sequencing of hprt cDNA and genomic fragments. The spectrum of BPDE-induced mutations was very specific and clearly different from the background spectrum, which comprised many different types of mutations. Of the BPDE-induced mutations, 20/22 were transversions of GC base pairs and 18/22 were GC greater than TA transversions, which is in agreement with what has been found in other mammalian systems. While no particular 'hotspot' was observed for BPDE in the hprt gene, a sequence context specificity was detected. Ten of the 14 BPDE-induced mutations in the coding region were located in the sequence context AGG, and 2 in AG dinucleotides, which indicates that such sequences are sensitive to BPDE mutagenesis. Nine of the 22 BPDE-induced mutations and 2/12 background point mutations caused mRNA splicing errors. Six of the BPDE-induced splicing errors were caused by GC greater than TA transversions in the AG dinucleotide of different splice acceptor sites, which indicates that these sites may be frequent targets of BPDE mutagenesis. All mutated GC base pairs in the BPDE-induced spectrum were oriented so that the guanine was located on the non-transcribed strand. Assuming that the premutagenic lesion in these cases was covalent binding of BPDE to guanine and that BPDE bound randomly to both strands, the strand specificity of the BPDE-induced mutations indicates that preferential excision repair of BPDE adducts on the transcribed strand occurs in the hprt gene in human T-cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号