首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We have recently shown that a mild mechanical irritation (tape strip) of the epidermis on the back skin of adult mice induces a strong and long lasting increase in proliferative activity and cell production. This was revealed by following the fate of 3HTdR-pulse labelled cells within the basal and suprabasal layers. To obtain further insight into the dynamics of cell kinetic changes we also performed double labelling experiments with 3HTdR and BrdUrd at various times after tape stripping. The technique for analysing the data had to account for a non stationary cell flux. A novel biometrical technique was developed which provides parameter estimates on the S-phase duration, the cell cycle duration and a parameter characterizing the degree of nonstationarity. When applied to the mechanically irritated epidermis we observed that the cell flux through the S-phase in the basal layer was accelerated by a factor of 10 between 18 and 36 h post tape strip. This activation declined slightly in the subsequent days and remained 4-6 fold higher than in the normal steady state for over 7 days post tape strip. The duration of the S-phase was 3-5 h and showed little variation. We conclude that mild mechanical irritation only affecting the stratum corneum has major stimulatory effects on the cell kinetics of proliferative keratinocytes in the basal layer of the epidermis indicating the existence of a powerful regulatory mechanism.  相似文献   

2.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

3.
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.  相似文献   

4.
Keratinocyte growth factor (KGF) activates keratinocyte migration and stimulates wound healing. Hyaluronan, an extracellular matrix glycosaminoglycan that accumulates in wounded epidermis, is known to promote cell migration, suggesting that increased synthesis of hyaluronan might be associated with the KGF response in keratinocytes. Treatment of monolayer cultures of rat epidermal keratinocytes led to an elongated and lifted cell shape, increased filopodial protrusions, enhanced cell migration, accumulation of intermediate size hyaluronan in the culture medium and within keratinocytes, and a rapid increase of hyaluronan synthase 2 (Has2) mRNA, suggesting a direct influence on this gene. In stratified, organotypic cultures of the same cell line, both Has2 and Has3 with the hyaluronan receptor CD44 were up-regulated and hyaluronan accumulated in the epidermis, the spinous cell layer in particular. At the same time the expression of the early differentiation marker keratin 10 was inhibited, whereas filaggrin expression and epidermal permeability were less affected. The data indicate that Has2 and Has3 belong to the targets of KGF in keratinocytes, and support the idea that enhanced hyaluronan synthesis acts an effector for the migratory response of keratinocytes in wound healing, whereas it may delay keratinocyte terminal differentiation.  相似文献   

5.
Guinea pig lymph node lymphocytes and human peripheral blood lymphocytes when stimulated by specific antigen or mitogen will release factors that affect in vitro macrophage migration. Migration inhibition factor production appears to be under the control of suppressor cells which are T lymphocytes. When suppressor cells are generated by stimulation with Con A for 4 days, migration stimulation factor (M.St.F.) activity is found. In other situations where M.St.F. is found this is thought to be due to increased suppressor cell activity. For example, young adults produce this lymphokine when stimulated with Con A, whereas aged individuals produce MIF. Concanavalin A appears to be the mitogen of choice for M.St.F. production, and phytohemagglutinin for MIF production. The release of this putative factor M.St.F. from suppressor T cells helps to explain some of the difficulties that have existed in studies of macrophage migration inhibition.  相似文献   

6.
We have previously reported that the addition of lithium chloride (LiCl) to murine Dexter cultures results in increased numbers of progenitor and mature hematopoietic cells of the granulocyte, macrophage, and megakaryocyte lineages. We now report the effect of various levels of LiCl on the high proliferative potential colony-forming cell (HPP-CFC) in Dexter culture and on the induction of growth factors from Dexter stromal cells. LiCl (4 mEq/L) stimulated supernatant HPP-CFC for the first 4 weeks of culture (150-275%), and stimulated stromal HPP-CFC at week 3 (170-222%). Higher levels of lithium (8 and 12 mEq/L) selectively stimulated supernatant HPP-CFC, macrophage, and eosinophil production, whereas granulocytes and granulocyte-macrophage colony-forming cells (CFU-C) were inhibited. mRNA expression was evaluated from week 4 Dexter cultures that received a pulse or continuous exposure to lithium and had received either 0 or 1,100 cGy irradiation. Four mEq/L LiCl stimulated increased expression of G-CSF, GM-CSF, IL-6, and, in the nonirradiated stroma continuously exposed to lithium, CSF-1 mRNA. In general, the higher levels of lithium stimulated increased mRNA expression for these same growth factors. mRNA for the recently described Steel factor was decreased with increasing levels of lithium added to either normal or irradiated stroma. Bioassays of conditioned medium (cm) from irradiated cultures against the FDC-P1 and T1165 cell lines indicated cytokine activity, which was blocked by antibodies to GM-CSF and IL-6, respectively. Altogether these data show that lithium stimulates Dexter HPP-CFC, and this stimulation appears to be mediated by multiple growth factors that are induced from stromal cells.  相似文献   

7.
Although it is well known that in various T cell-mediated skin diseases T cells migrate preferentially to epidermis, no direct evidence has been presented in which molecules on T cells are important in directing T cell traffic to epidermis. We have previously established CD4+ autoreactive cloned T cells with a special tropism for epidermis in vitro as well as in vivo. Antibody inhibition studies demonstrated that only anti-lymphocyte function associated Ag 1 (anti-LFA-1) mAb completely inhibited the in vitro migration of the T cells toward the epidermis, whereas mAb against other T cell surface molecules had little or no effect. Monovalent F(ab) fragment of the anti-LFA-1 mAb, although less efficient, also inhibited the T cell migration. The apparent dependency of the inhibition on the anti-alpha-chain mAb suggested a major role for the alpha-chain of LFA-1 in T cell migration to epidermis. The relevance of an LFA-1-dependent mechanism to the epidermotropic migration of T cells was further strengthened by the findings that the T cell migration to epidermis was inhibited by divalent cation depletion, cytochalasin B, and low temperature. These findings indicate that the LFA-1 molecule, which is thought to be primarily involved in cell-to-cell adhesions, also plays an important role in directing T cell migration to epidermis.  相似文献   

8.
The epididymal portion of the rat vas deferens produced prostaglandins (PG) E(2), F(2alpha)and 6-keto F(1alpha). Electrical stimulation (ES, 0.1 Hz, 1 ms) increased such production by 100%, and similar results were obtained in the presence of 1.0 microM bradykinin (Bk). When both stimuli were applied simultaneously, the increases in PG production were 1100% for PGE(2), 800% for PGF(2alpha)and 400% for PG6-keto F(1alpha). Prazosin abolished the effect of ES on PG production. A selective Bk B(2)-receptor antagonist abolished the increase in PG production induced by Bk, both in non-stimulated and in ES tissues. Bk (1.0 microM) elicited contractile responses in non-stimulated as well as in ES tissues, responses that were not modified in the presence of 10 microM indomethacin. In conclusion, the effects of Bk on prostaglandin production appears to depend on the activation of B(2) receptors, while the increase in prostaglandin release induced by ES, and the effects observed with both stimuli simultaneously, should be mediated by the release of noradrenaline and the subsequent activation of alpha(1) adrenoceptors.  相似文献   

9.
10.
B Lei  Y Zhang  C Han 《Life sciences》2001,69(3):301-308
The norepinephrine (NE)-induced regulation of alpha1-adrenoceptors (ARs) expression in human embryonic kidney (HEK) 293 cells stably expressing cloned alpha1-AR subtypes with similar receptor densities was investigated. In the presence of 10 microM propranolol, the treatment of cells with 10 microM NE for 4-72 h down-regulated alpha1A- and alpha1D-AR. but increased alpha1B-AR expression in a time-dependent manner. The down-regulation of alpha1A-AR reached maximum of 40.3 +/- 14.7 % at 48h. The down-regulation of alpha1D-AR reached maximum of 51.3 +/- 3.7% at 24h. With the stimulation of NE, alpha1B-AR density was increased maximally by 112.4 +/- 43.4% at 48h. The protein kinase C (PKC) inhibitor calphostin C or R0-31-8220 abolished the NE-induced down-regulation of alpha1A- and alpha1D-AR, but showed no effect on the up-regulation of alpha1B-AR. The PKC agonist PMA not only mimicked the NE-induced down-regulation of alpha1A- and alpha1D-AR, but also induced a down-regulation of alpha1B-AR. The endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) or thapsigargin, or the calcium chelator BAPTA/AM did not affect the down-regulation of alpha1A-AR, but inhibited the up-regulation of alpha1B-AR induced by NE. Calmodulin antagonist W-7. tyrosine kinase inhibitor genistein or tyrphostin A25 had no effect on NE-induced up-regulation of alpha1B-AR. The results suggest that three alpha1-AR subtypes are differently regulated by sustained NE stimulation with different signal transduction pathways.  相似文献   

11.
12.
We have studied the effect of carbamoylcholine in Trypanosoma cruzi epimastigote forms prelabelled with [32P]-Pi. Suspensions of cells were incubated at 28 degrees C to measure changes in the levels of [32P]-labelled phospholipids after stimulation. The presence of this cholinergic agonist induced changes in the phosphoinositide metabolism; a shift in the levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid (PA) was observed, whereas the levels of the other glycerophospholipids were not changed. This study shows that carbamoylcholine either directly or indirectly influences changes in phosphoinositide metabolism.  相似文献   

13.
14.
The intercellular lipids of the stratum corneum, which are highly enriched in ceramides, are critical for the mammalian epidermal permeability barrier. During the terminal stages of epidermal differentiation, the glucosylceramide content is dramatically reduced, while the content of free ceramides increases. To investigate whether beta-glucocerebrosidase (beta-GlcCer'ase) could be responsible for this change in lipid content, we characterized its activity in murine epidermis, compared enzyme activity to other murine tissues, and localized beta-GlcCer'ase activity within the epidermis. Epidermal extracts demonstrated linear 4-methylumbelliferyl-beta-D-glucose hydrolysis (to 3 h) with protein concentrations between 1 and 250 micrograms/ml. Whole epidermis contained comparable beta-glucosidase activity (9.1 +/- 0.4 nmol/min per mg DNA) to murine brain and liver, and 5-fold higher activity than spleen. Epidermal beta-glucosidase activity was stimulated greater than 15-fold by sodium taurocholate at pH 5.6, and inhibited at acidic pH (3.5-4.0). Bromoconduritol B epoxide (greater than or equal to 1.0 microM), inhibited epidermal enzyme activity by greater than 75%, while activity in brain, liver, and spleen was only inhibited by 6, 17, and 14%, respectively. Moreover, beta-GlcCer'ase mRNA expression in murine epidermis exceeded levels in liver, brain, and spleen. Finally, beta-GlcCer'ase activity was highest in the outer, more differentiated epidermal cell layers including the stratum corneum. In summary, mammalian epidermis contains an usually high percentage (approximately 75%) of beta-glucocerebrosidase activity, and the concentration of activity in the more differentiated cell layers may account for the replacement of glucosylceramide by ceramides in the outer epidermis.  相似文献   

15.
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.  相似文献   

16.
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of beta 1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured beta 1-deficient keratinocytes confirmed the absence of beta 1 integrins and showed downregulation of alpha 6 beta 4 but not of alpha v integrins. beta 1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of beta 1 integrins in keratinocytes caused a severe defect in wound healing. beta 1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, beta 1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of beta 1 integrins in keratinocyte migration and wound re-epithelialisation. Movies available on-line  相似文献   

17.
X Zhu  Z Li  W Pan  L Qin  G Zhu  Y Ke  J Wu  P Bo  S Meng 《Molecular and cellular biochemistry》2012,369(1-2):255-266
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.  相似文献   

18.
When Lilium longiflorum plants were stimulated mechanicallyby lightly stroking the leaf blades with a dusting bush daily,stem elongation was significantly inhibited in an epinasticresponse. The mechanical stimulation increased ethylene productionand resulted in reduced plant height. Thus, ethylene may playan important role in thigmomorphogenesis. (Received July 15, 1974; )  相似文献   

19.
Mechanical stimulation of dorsal mouse skin by skin massage or removal of the horny layer results in a mutually comparable increase in DNA-labelling and mitotic activity. However, only after injury such as removal of the horny layer hyperplasia develops. This phenomenon, called "hyperplastic transformation" is characterized by a transient abolition of the epidermal G1 chalone responsiveness. There is some indication that the susceptibility to a heat labile factor, probably the epidermal G2 chalone, is not affected. Skin massage neither interferes with the responsiveness to epidermal G1 chalone nor induces "hyperplastic transformation". Mouse tail epidermis shows a "functional hyperplasia" and responds to the G1 chalone. To explain these observations, it is assumed that the epidermal stem cell population is heterogeneous consisting of G1 chalone-sensitive and G1 chalone-insensitive cells.  相似文献   

20.
Several lines of evidence have suggested that protein tyrosine phosphatases, including CD45 and SHP-1, regulate macrophage activation. Macrophages from mice lacking SHP-1 (motheaten mice) are hyper-responsive to many stimuli, suggesting that SHP-1 may negatively regulate macrophage activation. Herein we report that the repressible/inducible over-expression of wild-type SHP-1 in a subclone of RAW 264.7 macrophages (RAW-TT10 cells) inhibited both TNF secretion and iNOS protein accumulation in response to stimulation with lipopolysaccharide (LPS) and recombinant murine interferon-gamma and led to diminished LPS-mediated tyrosine phosphorylation of vav1. In contrast, expression of a truncated SHP-1 construct previously shown to interfere with endogenous SHP-1 function modestly augmented LPS-mediated TNF and iNOS production and did not inhibit vav1 tyrosine phosphorylation. Taken together, these data provide the first direct evidence that SHP-1 inhibits macrophage activation by LPS and suggest that this effect may be mediated in part by dephosphorylation of vav1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号