首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of cholesterol with a bovine adrenocortical mitochondrial acetone-dried powder preparation yielded (22R)-22-hydroxycholesterol (I), (20R,22R)-20,22-dihydroxycholesterol(II), and pregnenolone (III) which were conclusively identified by combined gas chromatography-mass spectrometry. Incubations with [4-14C]cholesterol yielded I, II, and III with specific activities (determined from partial mass-spectral scans) not significantly different from those of the used substrate or the cholesterol reisolated after the incubation, demonstrating that the isolated compounds arose mostly, if not entirely, from the substrate cholesterol. Incubations in an 18O-enriched atmosphere yielded I, II, and III with 18O at position C-22, C-20 and C-22, and C-20, respectively, providing evidence that the hydroxyl groups of the side chain of I and II and the C-20 oxygen atom of III originated from molecular oxygen. The distribution of the oxygen atoms in II after incubation with 18O2 and 16O2 (devoid of 16O18O) proved that the hydroxyl groups of the side chain of II were introduced from two different molecules of oxygen, consistent with a sequential hydroxylation of cholesterol. No (20S)-20-hydroxycholesterol was found. Incubation of I in an 18O-enriched atmosphere afforded II and III with 18O at C-20.  相似文献   

2.
We present here the results of density functional theory (DFT) calculations directed toward elucidation of the CH bond activation mechanism that might be adopted by the particulate methane monooxygenase (pMMO) in the hydroxylation of methane and related small alkanes. In these calculations, we considered three of the most probable models for the transition metal active site mediating the "oxo-transfer": (i) the trinuclear copper cluster bis(mu(3)-oxo)trinuclear copper(II, II, III) complex 1, recently proposed by Chan et al. [S.I. Chan, K.H.-C. Chen, S.S.-F. Yu, C.-L. Chen, S.S.-J. Kuo, Biochemistry 43 (2004) 4421-4430.]; (ii) the most frequently used model complex, bis(mu-oxo)Cu(III)(2) complex 2; and (iii) the mixed-valence bis(mu-oxo)Cu(II)Cu(III) complex 3. The results obtained indicate that the methane hydroxylation chemistry mediated by the trinuclear copper cluster bis(mu(3)-oxo)trinuclear copper(II, II, III) complex 1 offers the most facile pathway for methane hydroxylation, and this model yields KIE values that are in good agreement with experiment. In this mechanism, the reaction proceeds along a "singlet" potential surface and a "singlet oxene" is directly inserted across a CH bond in a concerted manner. Kinetic isotope effects (k(H)/k(D) or KIE) associated with the concerted oxene insertion process mediated by complex 1 are calculated to be 5.2 at 300K when tunneling effects are included. Overall rate constants for the methane hydroxylation by the three models have been calculated as a function of temperature, and the rates are at least 5-6 orders of magnitude more facile when the chemistry is mediated by complex 1 compared to complex 2 or complex 3.  相似文献   

3.
Pao CI  Morgan PW 《Plant physiology》1986,82(2):575-580
The photoperiodic behavior and other developmental and morphological differences of 11 maturity genotypes (as identified by JR Quinby 1967, Adv Agron 19: 267-305) of the milo group of Sorghum bicolor (L.) Moench were studied under 8, 10, 12, and 14 hour photoperiods. Sorghum is a quantitative short day plant. The genotypes studied differ in genes which modify photoperiodic behavior and thus maturity; the alleles are designated as Ma(1), ma(1), Ma(2), ma(2), Ma(3), ma(3), and ma(3) (R) (single symbols indicate homozygosity at the indicated gene loci). Based on floral initiation (differentiation) under 10, 12, and 14 hour photoperiods the 11 genotypes were assigned to three clases: (I) flower initiation delayed by 12 hour photoperiods (all genotypes with Ma(1)Ma(2) but not ma(3) (R)), (II) flower initiation delayed by 14 hour photoperiods (all genotypes with Ma(1)ma(2), ma(1)Ma(2), or ma(1)ma(2) but not ma(3) (R)), (III) flower initiation not drastically delayed by 14 hour photoperiods (all genotypes with ma(3) (R)). All of the class III genotypes were taller, had longer leaf sheaths, narrower and longer leaf blades, and less leaf area, than the other genotypes. In addition, the class III genotypes initiated rapid culm and thus internode elongation sooner after floral initiation than any of the class I or II genotypes. Dry weight did not differ between the class III genotypes and the others. The rate of leaf emergence in the class III genotypes and all others was indistinguishable until after floral initiation in the former. The allelic combination unique to class I, Ma(1)Ma(2), makes plants very photoperiod sensitive without causing observable changes in morphology or other development events. The allelic combination unique to class III, ma(3) (R), makes plants relatively photoperiod insensitive and results in several differences in morphology and development.  相似文献   

4.
Mutatu W  Klettke KL  Foster C  Walker KD 《Biochemistry》2007,46(34):9785-9794
The phenylalanine aminomutase from Taxus catalyzes the vicinal exchange of the amino group and the pro-3S hydrogen of (2S)-alpha-phenylalanine to make (3R)-beta-phenylalanine. While the migration of the amino group from C2 of the substrate to C3 of the product is already known to proceed intramolecularly with retention of configuration, the stereochemistry of the hydrogen transfer remained unknown, until now. The chemical shifts of the prochiral hydrogens of authentic (3R)-beta-phenylalanine were established by 1H NMR, and the configuration of each hydrogen was assigned by 2H NMR analysis of a racemic mixture of [2,3-2H2]-(2S,3R)- and (2R,3S)-beta-phenylalanines synthesized via syn addition of deuterium gas with palladium catalyst to stereospecifically reduce the double bond of an N-acetyl enamine. After the aminomutase was incubated with [3,3-2H2]-(2S)-alpha-phenylalanine, the derived deuterium-labeled beta-diastereoisomer product, derivatized as the N-acetyl methyl ester, was analyzed by 2H NMR, which revealed that the mutase shuttles the pro-3S hydrogen to C2 of the beta-isomer product (designated 2S,3R) with retention of configuration. Retention of configuration at both reaction termini is unique among all aminomutase mechanisms examined so far. Furthermore, the dynamics of the Cbeta-H bond of the substrate were measured in a competitive experiment with deuterium-labeled substrate to calculate a primary kinetic isotope effect on Vmax/KM of 2.0 +/- 0.2, indicating that C-H bond cleavage is likely rate limiting. Isotope exchange data indicate that the migratory deuterium of [2H8]-(2S)-alpha-phenylalanine, at saturation, dynamically exchanges up to 75%, with protons from the solvent during the reaction after the first 10% of product is formed. The calculated equilibrium constant of 1.1 indicates that the beta-isomer was slightly favored relative to the alpha-isomer at 30 degrees C.  相似文献   

5.
The stereochemical course of the aliphatic hydroxylation of gamma-butyrobetaine by calf liver and by Pseudomonas sp AK1 gamma-butyrobetaine hydroxylases has been determined. With [3(RS)-3-3H]-gamma-butyrobetaine or [3(R)-3-3H]-gamma-butyrobetaine as substrate, a rapid and significant loss of tritium to the medium occurred. On the other hand, with [3(S)-3-3H]-gamma-butyrobetaine, only a negligible release of tritium to the aqueous medium was observed. Indeed, on hydroxylation of [3(S)-3-2H]-gamma-butyrobetaine by either the calf liver or bacterial hydroxylase, the isolated product L-carnitine was found to have retained all of the deuterium initially present in the 3(S) position. Since the absolute configuration of the product L-carnitine has been determined to be R, such results are only compatible with a hydroxylation reaction that proceeded with retention of configuration. With [methyl-14C,3(R)-3-3H]-gamma-butyrobetaine as substrate for the calf liver hydroxylase, the percentage of tritium retained in the [methyl-14C]-L-carnitine product was determined as a function of percent reaction. The results of these studies indicated that pro-R hydrogen atom abstraction exceeded 99.9%. Experiments using racemic [methyl-14C,3(RS)-3-3H]-gamma-butyrobetaine as substrate yielded similar results and additionally allowed us to estimate alpha-secondary tritium kinetic isotope effects of 1.10 and 1.31 for the bacterial and calf liver enzymes, respectively. These results are discussed within the context of the radical mechanism for gamma-butyrobetaine hydroxylase previously proposed [Blanchard, J. S., & Englard, S. (1983) Biochemistry 22, 5922], and the required topographical arrangement of enzymic oxidant and substrate is illustrated.  相似文献   

6.
The hydroxylation of phenylalanine by the Fenton reaction and gamma-radiolysis yields 2-hydroxy-, 3-hydroxy-, and 4-hydroxyphenylalanine (tyrosine), while the hydroxylation of tyrosine results in 2,3- and 3,4-dihydroxyphenylalanine (dopa). Yields are determined as a function of pH and the presence or absence of oxidants. During gamma-radiolysis and the Fenton reaction the same hydroxylated products are formed. The final product distribution depends on the rate of the oxidation of the hydroxyl radical adducts (hydroxycyclohexadiene radicals) relative to the competing dimerization reactions. The pH profiles for the hydroxylations of phenylalanine and tyrosine show a maximum at pH 5.5 and a minimum around pH 8. The lack of hydroxylated products around near pH 8 is due to the rapid oxidation of dopa to melanin. The relative abilities of iron chelates (HLFe(II) and HLFe(III) to promote hydroxyl radical formation from hydrogen peroxide are nitrilotriacetate (nta) greater than ethylenediaminediacetate (edda) much greater than hydroxyethylethylenediaminetriacetate greater than citrate greater than ethylenediaminetetraacetate greater than diethylenetriaminepentaacetate greater than adenosine 5'-triphosphate greater than pyrophosphate greater than adenosine 5'-diphosphate greater than adenosine 5'-monophosphate. The high activity of iron-nta and -edda chelates is explained by postulating the formation of a ternary Fe(III)-L-dopa complex in which dopa reduces Fe(III). The hydroxylations of phenylalanine and tyrosine are similar to that of salicylate (Z. Maskos, J. D. Rush, and W. H. Koppenol, 1990, Free Radical Biol. Med. 8, 153-162) and tryptophan (preceding paper) in that oxidants augment the formation of hydroxylated products by catalyzing the dismutation of hydroxyl radical adducts to the parent compound and a stable hydroxylated product. A comparison of salicylate and the amino acids tryptophan, phenylalanine, and tyrosine clearly shows that salicylate is the best indicator of hydroxyl radical production.  相似文献   

7.
Autoradiographical studies revealed that 10 nM [3H]N-acetyl-aspartyl-glutamate (NAAG) labelled grey matter structures, particularly in the hippocamus, cerebral neocortex, striatum, septal nuclei and the cerebellar cortex. The binding was inhibited by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG IV), an agonist at group II metabotropic glutamate receptors (mGluR II). (RS)-alpha-Methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-cyclopropyl-4-phosphonoglycine (CPPG) and (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE), all antagonists at mGluR II and mGluR III, also inhibited [3H]NAAG binding. Other inhibitors were (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a broad-spectrum mGluR agonist with preference for groups I and II and the mGluR I agonists/mGluR II antagonists (S)-3-carboxy-4-hydroxyphenylglycine (3,4-CHPG) and (S)-4-carboxy-3-hydroxyphenylglycine (4,3-CHPG). Neither the mGluR I specific agonist (S)-dihydroxyphenylglycine nor any of the ionotropic glutamate receptor ligands such as kainate, AMPA and MK-801 had strong effects (except for the competitive NMDA antagonist CGS 19755, which produced 20-40% inhibition at 100 microM) suggesting that, at low nM concentrations, [3H]NAAG binds predominantly to metabotropic glutamate receptors, particularly those of the mGluR II type. Several studies have indicated that NAAG can interact with mGluR II and the present study supports this notion by demonstrating that sites capable of binding NAAG at low concentrations and displaying pharmacological characteristics of mGluR II exist in the central nervous tissue. Furthermore, the results show that autoradiography of [3H]NAAG binding can be used to quantify the distribution of such sites in distinct brain regions and study their pharmacology at the same time.  相似文献   

8.
Experiments on cryptically chiral ethanes have indicated that the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) catalyzes the hydroxylation of ethane with total retention of configuration at the carbon center attacked. This result would seem to rule out a radical mechanism for the hydroxylation chemistry, at least as mediated by this enzyme. The interpretation of subsequent experiments on n-propane, n-butane, and n-pentane has been complicated by hydroxylation at both the pro-R and pro-S secondary C-H bonds, where the hydroxylation takes place. It has been suggested that these results merely reflect presentation of both the pro-R and pro-S C-H bonds to the hot "oxygen atom" species generated at the active site, and that the oxo-transfer chemistry, in fact, proceeds concertedly with retention of configuration. In the present work, we have augmented these earlier studies with experiments on [2,2-2H2]butane and designed d,l form chiral dideuteriobutanes. Essentially equal amounts of (2R)-[3,3-2H2]butan-2-ol and (2R)-[2-2H1]butan-2-ol are produced upon hydroxylation of [2,2-2H2]butane. The chemistry is stereospecific with full retention of configuration at the secondary carbon oxidized. In the case of the various chiral deuterated butanes, the extent of configurational inversion has been shown to be negligible for all the chiral butanes examined. Thus, the hydroxylation of butane takes place with full retention of configuration in butane as well as in the case of ethane. These results are interpreted in terms of an oxo-transfer mechanism based on side-on singlet oxene insertion across the C-H bond similar to that previously noted for singlet carbene insertion (Kirmse, W., and Ozkir, I. S. (1992) J. Am. Chem. Soc. 114, 7590-7591). Finally, we discuss how even the oxene insertion mechanism, with "spin crossover" in the transition state, could lead to small amounts of radical rearrangement products, if and when such products are observed. A scheme is described that unifies the two extreme mechanistic limits, namely the concerted oxene insertion and the hydrogen abstraction radical rebound mechanism within the same over-arching framework.  相似文献   

9.
The bioactivity of 25-hydroxybrassinolide, (25S)- and (25R)-26-hydroxybrassinolide, (25S)- and (25R)-25,26-dihydroxybrassinolide, and of (25R)-25,26-epoxybrassinolide was tested in the rice leaf lamina inclination assay. The 25- and (25S)-26-hydroxy derivatives are known metabolites of the naturally-occurring phytohormone brassinolide, whereas the other compounds are novel, but closely related, congeners. When tested alone, all showed either no activity or only weak activity at relatively high doses. When coapplied with indole-3-acetic acid (IAA), an auxin that synergizes the effects of brassinosteroids, enhanced bioactivity was observed for each compound. However, even when applied together with IAA, none of the compounds proved more bioactive than brassinolide with or without IAA. We conclude from these results that enzymatic hydroxylation of endogenous brassinolide at C-25 and/or C-26 does not enhance brassinosteroid activity, and so does not comprise an activation pathway in brassinolide biosynthesis. Instead, these hydroxylations result in modest to appreciable metabolic deactivation.  相似文献   

10.
At least 6 N-acetylglucosaminyltransferases (GlcNAc-T I, II, III, IV, V and VI) are involved in initiating the synthesis of the various branches found in complex asparagine-linked oligosaccharides (N-glycans), as indicated below: GlcNAc beta 1-6 GlcNAc-T V GlcNAc beta 1-4 GlcNAc-T VI GlcNAc beta 1-2Man alpha 1-6 GlcNAc-T II GlcNAc beta 1-4Man beta 1-4-R GlcNAc T III GlcNAc beta 1-4Man alpha 1-3 GlcNAc-T IV GlcNAc beta 1-2 GlcNAc-T I where R is GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAcAsn-X. HPLC was used to study the substrate specificities of these GlcNAc-T and the sequential pathways involved in the biosynthesis of highly branched N-glycans in hen oviduct (I. Brockhausen, J.P. Carver and H. Schachter (1988) Biochem. Cell Biol. 66, 1134-1151). The following sequential rules have been established: GlcNAc-T I must act before GlcNAc-T II, III and IV; GlcNAc-T II, IV and V cannot act after GlcNAc-T III, i.e., on bisected substrates; GlcNAc-T VI can act on both bisected and non-bisected substrates; both Glc-NAc-T I and II must act before GlcNAc-T V and VI; GlcNAc-T V cannot act after GlcNAc-T VI. GlcNAc-T V is the only enzyme among the 6 transferases cited above which can be essayed in the absence of Mn2+. In studies on the possible functional role of N-glycan branching, we have measured GlcNAc-T III in pre-neoplastic rat liver nodules (S. Narasimhan, H. Schachter and S. Rajalakshmi (1988) J. Biol. Chem. 263, 1273-1281). The nodules were initiated by administration of a single dose of carcinogen 1,2-dimethyl-hydrazine.2 HCl 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. The nodules had significant GlcNAc-T III activity (1.2-2.2 nmol/h/mg), whereas the surrounding liver, regenerating liver 24 h after partial hepatectomy and control liver from normal rats had negligible activity (0.02-0.03 nmol/h/mg). These results suggest that GlcNAc-T III is induced at the pre-neoplastic stage in liver carcinogenesis and are consistent with the reported presence of bisecting GlcNAc residues in N-glycans from rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (A. Kobata and K. Yamashita (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

11.
All stereoisomers of methyl jasmonate (MJA) were prepared, and their effects on cell yield and promotion of paclitaxel (Taxol) and baccatin III production investigated in cell suspension cultures of Taxus media. (3R,7S)-MJA showed the strongest cell growth inhibition, followed by (3R,7R)-MJA. In contrast, (3S,7R)- and (3S,7S)-MJA had very low inhibitory effects, indicating that this inhibition depends largely on the (3R)-configuration. In terms of the promotion of paclitaxel and baccatin III production, (3R,7R)-MJA had the highest activity. Although it showed considerable activity at low concentration, at higher concentrations the activity was decreased due to strong inhibition of cell growth. Interestingly, paclitaxel and baccatin III contents increased even at a high (3S,7R)-MJA concentration, whereas the other isomers had the opposite effects. These findings are interpreted to suggest that the optimum configuration is (3R,7R), the (3R)-configuration not being indispensable, and that the (7R)-configuration is suitable for the promotion of paclitaxel and baccatin III production.  相似文献   

12.
Neutrophil NADPH:O2 oxidoreductase activity, essential in the killing of bacteria by neutrophils, can be elicited in a cell-free system that requires plasma membranes, cytosol and sodium dodecyl sulfate. In addition, GTP or its nonhydrolyzable analog guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) enhances NADPH oxidase activity. We investigated the mechanism of this effect of GTP gamma S in the cell-free system. Cytosol from human neutrophils was separated in three different soluble oxidase components (SOC I, SOC II, and SOC III). Previously we (Bolscher, B. G. J. M., Van Zwieten, R., Kramer, I. J. M., Weening, R. S., Verhoeven, A. J., and Roos, D. (1989) J. Clin. Invest. 83, 757-763) reported that the cytosol contains two components which act synergistically. We now report that one component (previously labeled SOC II) contains two different components that can be separated by ion exchange chromatography. Immunoblotting with antiserum B-1 (Volpp, B. D., Nauseef, W. M., and Clark, R. A. (1988) Science 242, 1295-1297), directed against a cytosolic complex capable of activating latent membranes in the cell-free system, showed a 47-kDa protein in SOC II and a 67-kDa protein in SOC III. SOC II also contains the 47-kDa phosphoprotein, which indicates that this phosphoprotein and the protein recognized by the antiserum are identical. Low rates of NADPH-dependent O2 consumption can be elicited by SOC II and SOC III in the absence of SOC I. This activity is independent of GTP gamma S. Addition of SOC I increases this activity 3-4-fold, only when GTP gamma S is present. Plasma membranes, incubated with SOC I plus GTP gamma S and re-isolated, showed a similar 3-4-fold enhanced O2 consumption with SOC II and SOC III. The GTP gamma S effect is exerted primarily at the level of the plasma membrane. The concentration of GTP gamma S that causes a half-maximal stimulation was 0.4 mu M. It is concluded that SOC I is a functional component of the NADPH oxidase.  相似文献   

13.
Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H]Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-[1Z-3H]linalyl pyrophosphate were separately compared to the achiral precursors [1-3H]geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates. These results are entirely consistent with the predicted stereochemistries and additionally revealed the unusual ability of these enzymes to catalyze antipodal cyclizations when presented with the unnatural linalyl enantiomer.  相似文献   

14.
A series of N-carboxyalkyl derivatives of L-leucyl-L-alanine was synthesized and tested as inhibitors of the zinc endoproteinase thermolysin. The purpose of the study was to determine whether bifunctional N-carboxyalkyl compounds with secondary metal coordinating groups are more potent inhibitors than analogs lacking such an additional binding function. Reductive condensation of L-leucyl-L-alanine (LA) with pyruvic, oxalacetic, alpha-ketoglutaric, 2-oxopentanoic, 4-ethyloxalacetic, or imidazoylpyruvic acids gave N-[1(R, S)-carboxyethyl]-LA (I), N-[1(R, S)-carboxy-2-carboxyethyl]-LA (II), N-[1(R, S)-carboxy-3-carboxypropyl]-LA (III), N-[1(R, S)-carboxy-n-butyl]-LA (IV), N-[1(R, S)-2-ethylcarboxyethyl]-LA (V), and N-[1(R, S)-carboxy-2-(4-imidazoyl-ethyl]-LA (VI), respectively. Values of KI determined with furylacryloyl-Gly-Leu-NH2 as substrate were 116 +/- 21, 7.4 +/- 1.8, 6.3 +/- 0.5, 19.7 +/- 1.5, 17.0 +/- 1.0, and 3.3 +/- 0.1 microM for compounds I-VI, respectively. Although bifunctional inhibitors II, III, and VI were indeed more potent than I, they were not much more effective than analogs IV and V that contained noncoordinating functionalities of comparable size. The results do not provide strong evidence for chelation of the active site zinc ion as proposed, although such interactions do not appear to be ruled out altogether.  相似文献   

15.
A Shafiee  C R Hutchinson 《Biochemistry》1987,26(19):6204-6210
A cytochrome P-450 monooxygenase that catalyzes the hydroxylation of 6-deoxyerythronolide B, an intermediate of erythromycin A biosynthesis in Saccharopolyspora erythraea (formerly Streptomyces erythreus), was resolved into two forms, P-450I and P-450II, by hydroxylapatite chromatography. These two proteins were purified to homogeneity from the CA 340 strain and found to have a P-450 content of 17.5 and 15.2 nmol/mg of protein, respectively. Either enzyme catalyzed the NADPH-dependent hydroxylation of 6-deoxyerythronolide B and (9R)- or (9S)-9-deoxo-9-hydroxy-6-deoxyerythronolide B in vitro when reconstituted with other electron-transport components from S. erythraea. Both of them had a Mr of 44,220 +/- 1350, a pI of 4.6, similar amino acid compositions, and an identical N-terminal sequence for the first five amino acids. They also showed identical antigenicity and cross-reactivity against polyvalent and specific antibodies and contained cytochrome P-450 in the low spin state with absorption maxima at 416, 532, and 565 nm. Their distinguishing characteristics were different activities toward the (9S)-9-deoxo-9-hydroxy-6-deoxyerythronolide B substrate and slightly different absorbance maxima in their dithionite-reduced CO-complexed spectra.  相似文献   

16.
The reduction of dioxygen by cellobiose oxidase leads to accumulation of H2O2, with either cellobiose or microcrystalline cellulose as electron donor. Cellobiose oxidase will also reduce many Fe(III) complexes, including Fe(III) acetate. Many Fe(II) complexes react with H2O2 to produce hydroxyl radicals or a similarly reactive species in the Fenton reaction as shown: H2O2 + Fe2+----HO. + HO- + Fe3+. The hydroxylation of salicylic acid to 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid is a standard test for hydroxyl radicals. Hydroxylation was observed in acetate buffer (pH 4.0), both with Fe(II) plus H2O2 and with cellobiose oxidase plus cellobiose, O2 and Fe(III). The hydroxylation was suppressed by addition of catalase or the absence of iron [Fe(II) or Fe(III) as appropriate]. Another test for hydroxyl radicals is the conversion of deoxyribose to malondialdehyde; this gave positive results under similar conditions. Further experiments used an O2 electrode. Addition of H2O2 to Fe(II) acetate (pH 4.0) or Fe(II) phosphate (pH 2.8) in the absence of enzyme led to a pulse of O2 uptake, as expected from production of hydroxyl radicals as shown: RH+HO.----R. + H2O; R. + O2----RO2.----products. With phosphate (pH 2.8) or 10 mM acetate (pH 4.0), the O2 uptake pulse was increased by Avicel, suggesting that the Avicel was being damaged. Oxygen uptake was monitored for mixtures of Avicel (5 g.1-1), cellobiose oxidase, O2 and Fe(III) (30 microM). An addition of catalase after 20-30 min indicated very little accumulation of H2O2, but caused a 70% inhibition of the O2 uptake rate. This was observed with either phosphate (pH 2.8) or 10 mM acetate (pH 4.0) as buffer, and is further evidence that oxidative damage had been taking place, until the Fenton reaction was suppressed by catalase. A separate binding study established that with 10 mM acetate as buffer, almost all (98%) of the Fe(III) would have been bound to the Avicel. In the presence of Fe(III), cellobiose oxidase could provide a biological method for disrupting the crystalline structure of cellulose.  相似文献   

17.
A cell-free system obtained from tissue cultures of Andrographis paniculata produces 2-trans,6-trans-farnesol (trans,trans-farnesol) and 2-cis,6-trans-farnesol (cis,trans-farnesol) (5:1), incorporating 10% of the radioactivity from 3R-[2-(14)C]mevalonate. There is total loss of (3)H from 3RS-[2-(14)C,(4S)-4-(3)H(1)]mevalonate and total retention from the (4R) isomer in both the trans,trans-farnesol and cis,trans-farnesol formed. When 3RS-[2-(14)C,5-(3)H(2)]mevalonate is used as substrate, there is total retention of (3)H in the trans,trans-farnesol, but loss of one-sixth of the (3)H in the cis,trans-farnesol. With (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-trans,trans -farnesol and (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-cis, trans-farnesol as substrates, the label is lost from the (1R)-cis,trans and (1S)-trans,trans isomers but retained in the (1R)-trans,trans and (1S)-cis,trans isomers; this shows that the pro-1S hydrogen is exchanged in the conversion of trans,trans-farnesol into cis,trans-farnesol and the pro-1R hydrogen in the conversion of cis,trans-farnesol into trans,trans-farnesol. (1R)-[1-(3)H(1)]-trans,trans-Farnesol and (1R)-[1-(3)H(1)]-cis,trans-farnesol have been synthesized by asymmetric chemical synthesis and exchanged with liver alcohol dehydrogenase. Both the trans- and the cis-alcohol exchange the pro-1R hydrogen atom.  相似文献   

18.
Hamberg M 《The FEBS journal》2005,272(3):736-743
Incubations of [8(R)-2H]9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid, [14(R)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid and [14(S)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid were performed with preparations of plant tissues containing divinyl ether synthases. In agreement with previous studies, generation of colneleic acid from the 8(R)-deuterated 9(S)-hydroperoxide was accompanied by loss of most of the deuterium label (retention, 8%), however, the opposite result (98% retention) was observed in the generation of 8(Z)-colneleic acid from the same hydroperoxide. Formation of etheroleic acid and 11(Z)-etheroleic acid from the 14(R)-deuterated 13(S)-hydroperoxide was accompanied by loss of most of the deuterium (retention, 7-8%), and, as expected, biosynthesis of these divinyl ethers from the corresponding 14(S)-deuterated hydroperoxide was accompanied by retention of deuterium (retention, 94-98%). Biosynthesis of omega5(Z)-etheroleic acid from the 14(R)- and 14(S)-deuterated 13(S)-hydroperoxides showed the opposite results, i.e. 98% retention and 4% retention, respectively. The experiments demonstrated that biosynthesis of divinyl ether fatty acids from linoleic acid 9- and 13-hydroperoxides takes place by a mechanism that involves stereospecific abstraction of one of the two hydrogen atoms alpha to the hydroperoxide carbon. Furthermore, a consistent relationship between the absolute configuration of the hydrogen atom eliminated (R or S) and the configuration of the introduced vinyl ether double bond (E or Z) emerged from these results. Thus, irrespective of which hydroperoxide regioisomer served as the substrate, divinyl ether synthases abstracting the pro-R hydrogen generated divinyl ethers having an E vinyl ether double bond, whereas enzymes abstracting the pro-S hydrogen produced divinyl ethers having a Z vinyl ether double bond.  相似文献   

19.
The following 2,3-diaryl-1,3-thiazolidin-4-ones of general formula (A) were synthesized and screened for antimicrobial activity. (formula; see text) where: X = H (I, III, V, VII, IX, XI, XIII, XV, XVII, XIX, XXI, XXIII), CH3 (II, IV, VI, VIII, X, XII, XIV, XVI, XVIII, XX, XXII, XXIV); R = H (I, II, V, VI, VII, VIII, XI, XIII), 4-CH3 (XXI, XXII, XXIII, XXIV), 4-Br (III, IV, IX, X), 2-NO2 (XIII, XIV), 3-NO2 (XV, XVI), 4-NO2 (XVII, XVIII), 4-OCH3 (XIX, XX); R' = H (I, II, III, IV, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII), 4-CH3 (XXIII, XXIV), 3-Br (V, VI), 4-Br (VII, VIII, IX, X), 4-J (XI, XII). These compounds were prepared by the general synthetic procedure previously reported for the 1,3-thiazolidin-4-one derivatives already prepared and screened in this SARs program. The synthetic approach involves the cyclocondensation of the appropriate Schiff bases with alpha-mercaptoalkanoic acids. The prepared compounds were screened against S. aureus, S. beta-haemolititicus, B. subtilis, M. paratuberculosis 607, S. typhi, Kl. pneumoniae, E. coli Bb, Ps, aeruginosa, C. albicans, A. niger, S. cerevisiae by a disk-diffusion assay (Kirby-Bauer modified). The results obtained in this investigation showed that the prepared compounds exhibited varying degrees of antimicrobial activity. They were especially inhibitory toward Gram-positive bacteria, and fungi. 4-Nitroderivatives (XVII), (XVIII), and 2-nitroderivatives (XIV) and (XIII) possessed marked antimicrobial activity against S. aureus, S. beta-haemoliticus, and B. subtilis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号