首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method to prepare multicellular spheroids from varied cell types   总被引:1,自引:0,他引:1  
A simple method for preparing multicellular spheroids from varied cell types has been successfully developed by using a stepwise gradient surface in cell attachability or detachability. The surface was composed of poly-N-isopropylacrylamide (PNIPAAm), a temperature responsive polymer, as a cell detaching component, and collagen as a cell attaching component. The surface functions as a culture substratum at 37 degrees C; then, when lowering the temperature of culture medium, the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature (LCST; about 30 degrees C), but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. The stepwise gradient surface which consisted of six different sectors was prepared by exposing a surface of the PNIPAAm-collagen mixture to ultraviolet (UV) irradiation six times using a photomask, sliding the hole position in the photomask, and changing the energy of UV irradiation. This was because crosslinking of collagen depended on the energy of UV irradiation, then, cell attachability to and detachability from the surface were tightly controlled by changing the energy.The stepwise gradient surface allowed us to easily determine optimal surface conditions to obtain good cell attachment and detachment as a self-supporting sheet from the surface to prepare multicellular spheroids. According to the evaluation of the attachability and detachability of 23 cell types, the optimal surface condition remarkably depended on each cell type. The detached cells under optimal surface conditions, including fibroblasts, osteoblastic cells, smooth muscle cells, and measangial cells, which were very difficult to form spherioids using conventional methods, were able to form multicellular spheroids. The results clearly demonstrate that the above-described method for preparing multicellular spheroids can be applied to varied cell types. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
A simple method to prepare size-regulated spheroids has been successfully developed by combining a temperature responsive polymer, poly-N-isopropyl-acrylamide (PNIPAAm), conjugated with collagen and ultraviolet (UV) irradiation with photomasks. The coating layer composed of PNIPAAm conjugated with collagen functions as a cell substratum at 37 degrees C, then when lowering the temperature of culture medium the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature LCST; about 30 degrees C, but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. On the other hand, UV effectively immobilized collagen in the coating layer because UV generates crosslinkages in collagen molecules. Crosslinkages were quantitatively introduced by controlling the energy of UV-irradiation thus the ability of human dermal fibroblasts to attach to and detach from the surface was tightly controlled. When the collagen content in the coating layer was 9 mug/cm(2) (collagen ratio, 4.5%), UV-irradiation energy of 2000 J/m(2) was suitable to obtain 100% of the attachability and detachability. However, the cells did not attach to the nonirradiated surface at this collagen content because insufficient collagen was immobilized. Using photomakes to apply UV-irradiation, it was possible to obtain cell-adhesive areas(irradiated areas) and nonadhesive areas (nonirradiated areas) on the same surface. Consequently, spheroids of any size and in any number from one dish were prepared. The viability of cells in spheroids 350 mum in diameter was maintained at a high level for 28 days; however, viability of spheroids 800 mum in diameter rapidly decreased for 2 days. The size was very important to maintain the viability. This novel method is useful to develop size-regulated spheroids for different applications; for example, in toxicology tests. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
Xu FJ  Zhong SP  Yung LY  Kang ET  Neoh KG 《Biomacromolecules》2004,5(6):2392-2403
A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si-H) surface. Well-defined functional polymer-Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm-PEGMA copolymers and block copolymers on Si-H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a "controlled" process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 degrees C [above the lower critical solution temperature (LCST, approximately 32 degrees C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The "active" chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.  相似文献   

4.
We developed a new biomaterial for use in cell culture. The biomaterial enabled protein-free cell culture and the recovery of viable cells by lowering the temperature without the aid of supplements. Insulin was immobilized and a thermoresponsive polymer was grafted onto a substrate. We investigated the effect of insulin coupling on the lower critical solution temperature (LCST) of the thermoresponsive polymer, poly(N-isopropylacrylamide-co-acrylic acid), using polymers that were ungrafted, or coupled with insulin. The insulin conjugates were precipitated from an aqueous solution at high temperatures, but they were soluble at low temperatures. The LCST was not significantly affected by the insulin coupling. The thermoresponsive polymer was grafted to glow-discharged polystyrene film and covalently conjugated with insulin. The surface wettability of the conjugate film was high at low temperatures and low at high temperatures. The amounts of immobilized insulin required to stimulate cell growth were 1-10% of the amount of free insulin required to produce the same effect. The maximal mitogenic effect of immobilized insulin was greater than that of free insulin. About half of the viable cells was detached from the film only by lowering the temperature. The recovered cells proliferated normally on new culture dishes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 339-344, 1997.  相似文献   

5.
In this study, a novel yet simple method, using a thermoreversible hydrogel system coated on tissue culture polystyrene (TCPS) dishes, was developed for harvesting living cell sheets. The hydrogel system was prepared by simply pouring aqueous methylcellulose (MC) solutions blended with distinct salts on TCPS dishes at 20 degrees C. For the applications to cell culture, only those aqueous MC compositions that may form a gel at 37 degrees C were chosen for the study. It was found that the hydrogel coating composed of 8% MC blended with 10 g/L PBS (phosphate buffered saline) (the MC/PBS hydrogel, with a gelation temperature of approximately 25 degrees C) stayed intact throughout the entire course of cell culture. To improve cell attachments, the MC/PBS hydrogel at 37 degrees C was evenly spread with a neutral aqueous collagen at 4 degrees C. The spread aqueous collagen gradually reconstituted with time and thus formed a thin layer of collagen (the MC/PBS/collagen hydrogel). After cells reached confluence, a continuous monolayer cell sheet formed on the surface of the MC/PBS/collagen hydrogel. When the grown cell sheet was placed outside of the incubator at 20 degrees C, it detached gradually from the surface of the thermoreversible hydrogel spontaneously, without treating with any enzymes. The results obtained in the MTT assay demonstrated that the cells cultured on the surface of the MC/PBS/collagen hydrogel had an even better activity than those cultured on an uncoated TCPS dish. After harvesting the detached cell sheet, the remaining viscous hydrogel system is reusable. Additionally, the developed hydrogel system can be used for culturing a multilayer cell sheet. The obtained living cell sheets may be used for tissue reconstructions.  相似文献   

6.
Acrylic acid (AAc) has been utilized to introduce reactive carboxyl groups to a temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). However, AAc introduction shifts the copolymer phase transition temperatures higher and dampens the steep homopolymer phase transition with increasing AAc content. We previously synthesized 2-carboxyisopropylacrylamide (CIPAAm) having both a similar side chain structure to IPAAm and a functional carboxylate group in order to overcome these shortcomings. In the present study, these copolymers, grafted onto cell culture plastic, were assessed for cell adhesion control using their phase transition. AAc introduction to PIPAAm-grafted surfaces resulted in excessive surface hydration and hindered cell spreading in culture at 37 degrees C. In contrast, CIPAAm-containing copolymer-grafted surfaces exhibited relatively weak hydrophobicity similar to both homopolymer PIPAAm-grafted surfaces as well as commercial ungrafted tissue culture polystyrene dish surfaces. Cells adhered and spread well on these surfaces at 37 degrees C in culture. As observed previously on PIPAAm-grafted surfaces, cells were spontaneously detached from the copolymer-grafted surfaces by reducing culture temperature. Cell detachment was accelerated on the CIPAAm copolymer-grafted surfaces compared to pure IPAAm surfaces, suggesting that hydrophilic carboxyl group microenvironment in the monomer and polymer is important to accelerate grafted surface hydration below the lower critical solution temperature, detaching cells.  相似文献   

7.
Neutrophil rolling on endothelial cells, the initial stage of its migrational journey to a site of inflammation, is facilitated by tether extraction and surface protrusion. Both phenomena have been studied extensively at room temperature, which is considerably lower than human body temperature. It is known that temperature greatly affects cellular mechanical properties such as viscosity. Therefore, we carried out tether extraction, surface protrusion, and cortical tension experiments at 37 degrees C with the micropipette aspiration technique. The experimental temperature was elevated using a custom-designed microscope chamber for the micropipette aspiration technique. To evaluate the constant temperature assumption in our experiments, the temperature distribution in the whole chamber was computed with finite element simulation. Our simulation results showed that temperature variation around the location where our experiments were performed was less than 0.2 degrees C. For tether extraction at 37 degrees C, the threshold force required to pull a tether (40 pN) was not statistically different from the value at room temperature (51 pN), whereas the effective viscosity (0.75 pN.s/microm) decreased significantly from the value at room temperature (1.5 pN.s/microm). Surface protrusion, which was modeled as a linear deformation, had a slightly smaller spring constant at 37 degrees C (40 pN/microm) than it did at room temperature (56 pN/microm). However, the cortical tension at 37 degrees C (5.7+/-2.2 pN/microm) was substantially smaller than that at room temperature (23+/-8 pN/microm). These data clearly suggest that neutrophils roll differently at body temperature than they do at room temperature by having distinct mechanical responses to shear stress of blood flow.  相似文献   

8.
The mechanical properties of endothelial cells were measured using the micropipette technique. The cells employed were collected from bovine aortic endothelium and cultured in our laboratory. Endothelial cells from confluent monolayers under no-flow conditions were detached from their substrate by trypsin or by a mechanical method and suspended in modified Dulbecco medium (MDM). In the micropipette technique, a part of the cell is aspirated into the tip of the micropipette under a microscope, and the deformation measured from a photograph. In this study, the data obtained were analyzed using a model where the cytoskeletal elements, which are considered to be the primary stress bearing components, are assumed to reside in a submembranous, cortical layer. Detached cells were found to have almost homogeneous mechanical properties based on measurements from different regions of the surface of a single cell. However, a hysteresis loop was observed in the relation between pressure and cell deformation during the loading and unloading processes. The calculated elastic shear moduli obtained for the trypsin-detached cells were as much as 10-20 times larger than those of a red blood cell. Mechanically-detached cells had moduli approximately twice that of the trypsin detached cells. Passage time, i.e., cell culture age, had no influence on the mechanical properties of the trypsin-detached cells, but did have an effect on the mechanically-detached cells, with both the younger and older cells being somewhat stiffer.  相似文献   

9.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.  相似文献   

10.
Three variants of the procedure for determination of antibiotic sensitivity in anaerobic microorganisms with the use of standard paper discs were developed. According to the first variant the solid nutrient medium is melted at 46 degrees C and mixed with the culture of the microbe being tested. The mixture is added to the cover of a Petri dish. When the medium becomes solid, antibiotic sensitivity discs are placed onto the agar surface. After that one more layer of the medium is added. The medium is allowed to solidify and some more medium is poured near the cover edge. Immediately after that the Petri dish is placed with its flat surface onto the agar layer in its cover. According to the first and second variants the mixture of the medium and culture is added to a Petri dish and immediately a transparent gas-proof polymer film of the dish size is placed onto the agar surface. Previously antibiotic paper discs or solutions are fixed on the films. THe incubation temperature for all three variants is 37 degrees C. The procedure allows one to observe the culture growth and to obtain the results earlier than in case the culture is incubated in an aerostate. The procedure is simple and saves labor and time.  相似文献   

11.
Temperature-sensitive (ts) mutants were isolated in a cell line of Drosophila melanogaster, GM1, by ethyl methanesulfate treatment. Two of them, ts15 and ts58, formed colonies at 23 degrees C but not at 30 degrees when inoculated at densities of/or less than 10(5) cells per 60 X 15-mm dish. By using these ts mutants, cell fusion was attempted with polyethylene glycol (PEG) 6000. Several colonies per dish developed at 30 degrees C when different ts mutants were mixed, treated with PEG, and inoculated at a density of 10(4) cells per dish. Cells in some of the colonies thus developed were propagated and their temperature-sensitive character and karyotypes were studied. The results indicated that cell fusion could be induced with PEG and that the cells which formed colonies at 30 degrees C after PEG treatment were the hybrids in which the temperature-sensitive lesions in the mutants were complemented.  相似文献   

12.
Polymyxin peptide conjugated to the end groups of highly branched poly(N-isopropyl acrylamide) was shown to bind to a Gram negative bacterium, Pseudomonas aeruginosa . The nonbound polymer had a lower critical solution temperature (LCST) above 60 °C. However, binding caused aggregation, which was disrupted on cooling of the bacteria and polymer mixture. The data indicate that polymer binding of bacteria occurred by interaction of the end groups with lipopolysaccharide and that the binding decreased the LCST to below 37 °C. Cooling then progressed the polymer/bacteria aggregate through a bound LCST into an open polymer coil conformation that was not adhesive to P. aeruginosa .  相似文献   

13.
In this study, specific interactions between immobilized RGDS (Arg-Gly-Asp-Ser) cell adhesion peptides and cell integrin receptors located on cell membranes are controlled in vitro using stimuli-responsive polymer surface chemistry. Temperature-responsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(IPAAm-co-CIPAAm)) copolymer grafted onto tissue culture grade polystyrene (TCPS) dishes permits RGDS immobilization. These surfaces facilitate the spreading of human umbilical vein endothelial cells (HUVECs) without serum depending on RGDS surface content at 37 degrees C (above the lower critical solution temperature, LCST, of the copolymer). Moreover, cells spread on RGDS-immobilized surfaces at 37 degrees C detach spontaneously by lowering culture temperature below the LCST as hydrated grafted copolymer chains dissociate immobilized RGDS from cell integrins. These cell lifting behaviors upon hydration are similar to results using soluble RGDS in culture as a competitive substitution for immobilized ligands. Binding of cell integrins to immobilized RGDS on cell culture substrates can be reversed spontaneously using mild environmental stimulation, such as temperature, without enzymatic or chemical treatment. These findings are important for control of specific interactions between proteins and cells, and subsequent "on-off" regulation of their function. Furthermore, the method allows serum-free cell culture and trypsin-free cell harvest, essentially removing mammalian-sourced components from the culture process.  相似文献   

14.
To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes.  相似文献   

15.
The effect of a support composed of polymers based on poly-N-isopropyl acrylamide and poly-t-butyl acrylamide and collagen on human fibroblasts was studied. As the temperature was decreased to 4 degrees C, the polymeric support is converted to a diluted state and cells spontaneously detached from it. The presence of collagen in the support prevented the detachment of cells and increased cell growth. It was shown by microcalorimetry, that in a copolymer-collagen mixture, a microstratification takes place.  相似文献   

16.
17.
Summary Construction details are described for a minichamber device that maintains a localized atmosphere of carbon dioxide in air over the stage of an innerted microscope. This device is easily constructed, from Plexiglas and its specifications can be adjusted to fit virtually any inverted microscopy. A flow of warm, humidified carbon dioxide in air gas mixture can be directed over a petri dish or unsealed culture flask to maintain the pH of bicarbonate-CO2 buffered media. By this means, prolonged culture of cells directly on the microscope stage is made possible without occurrence of detrimental pH changes. If the microscope is fitted with an environmental control chamber to maintain temperature, cells can be maintained on the microscope stage for days, permitting frequent observation of cell growth and activity. Alternatively, continuous cine or video recordings can be made. For example, using this device, hamster and rhesus monkey embryos have been cultured for 2 to 5 d on an inverted microscope while continuous time-lapse recordings were made of cell division and differentiation and activity of cellular organelles. The work was supported by National Institutes of Health RR00167 to the Wisconsin Regional Primate Research Center and HD14765 to B.D.B., and Life Sciences University of Wisconsin-Madison.  相似文献   

18.
BHK 21 cells can adhere to a protein-coated plastic dish in the presence of Ca2+ at temperatures above 12 degrees C. However, they cannot adhere below 8 degrees C. The ESR spectrum of cells spin-labeled with a stearic acid label indicated that the membrane fluidity changed characteristically at 10 degrees C, 20 degrees C, and 30 degrees C. The critical temperature for cell adhesion coincided well with one of the characteristic temperatures for the membrane fluidity change. In the case of adhesion in the presence of Mg2+, no such correlation was observed.  相似文献   

19.
A unique direct-view stereo electron microscope technique was used to visualize the structure and three-dimensional distributions of mitochondria in CHO cells in situ following hyperthermic treatments. Aberrations induced by various heating regimens were recorded. The protocol included a trypsin digestion that may have enhanced the expression of the initial heat damage. The developed damage was observed as increasing levels of mitochondrial distortion, swelling, and dissociation. Minimal damage was induced at 42 degrees C for exposures of up to 4 h, while significant damage was induced at 43 degrees C for exposures of more than 30 min and at 45 degrees C for exposures of more than 10 min. For moderate exposures, a partial recovery of mitochondrial integrity was observed when the heat treatment was followed by incubation at 37 degrees C for 24 h. Mitochondrial damage was related to the heat dose in that increasing treatment temperature resulted in greater damage, but when compared to cell survival the damage did not parallel cell killing under all time-temperature conditions.  相似文献   

20.
End-functionalized poly(N-isopropylacrylamide) (PNIPA) was synthesized by living free radical polymerization and conventional free radical polymerization and was used to prepare graft copolymers with poly(ethylenimine) (PEI). The copolymers exhibited lower critical solution temperature (LCST) behavior between 30 and 32 degrees C and formed complexes with plasmid DNA. The LCST of the copolymers in the DNA complexes increased slightly to approximately 34-35 degrees C. Cytotoxicity of the copolymers was evaluated by measuring lactate dehydrogenase (LDH) release from cells. The copolymers exhibited temperature-dependent toxicity, with higher levels of LDH release observed at temperatures above the LCST. Cellular uptake and transfection activity of the DNA complexes with the PEI-g-PNIPA copolymers were lower than those of the control PEI/DNA complexes at temperature below the LCST but increased to the PEI/DNA levels at temperatures above the LCST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号