首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.  相似文献   

2.
To define basic features of mRNA processing and decay in Escherichia coli, we have examined a set of mRNAs encoded by the filamentous phage f1 that have structures typical of bacterial mRNAs. They bear a stable hairpin stem-loop on the 3' end left from rho-independent termination and are known to undergo processing by RNase E. A small percentage of the f1 mRNAs were found to bear poly(A) tails that were attached to heterogeneous positions near the common 3' end. In a poly(A) polymerase-deficient host, the later-appearing processed mRNAs were stabilized, and a novel small RNA accumulated. This approximately 125-nt RNA proved to arise via RNase E cleavage from the 3'-terminal region of the mRNAs bearing the terminator. Normally ribosomes translating gene VIII appear to protect this cleavage site from RNase E, so that release of the fragment from the mRNAs occurs very slowly. The data presented define additional steps in the f1 mRNA processing and decay pathways and clarify how features of the pathways are used in establishing and maintaining the persistent filamentous phage infection. Although the primary mode of decay is endonucleolytic cleavage generating a characteristic 5' --> 3' wave of products, polyadenylation is involved in part in degradation of the processed mRNAs and is required for turnover of the 125-nt mRNA fragment. The results place polyadenylation at a later rather than an initiating step of decay. They also provide a clear illustration of how stably structured RNA 3' ends act as barriers to 3' --> 5' exonucleolytic mRNA decay.  相似文献   

3.
The Saccharomyces cerevisiae mutant ref2-1 (REF = RNA end formation) was originally identified by a genetic strategy predicted to detect decreases in the use of a CYC1 poly(A) site interposed within the intron of an ACT1-HIS4 fusion reporter gene. Direct RNA analysis now proves this effect and also demonstrates the trans action of the REF2 gene product on cryptic poly(A) sites located within the coding region of a plasmid-borne ACT1-lacZ gene. Despite impaired growth of ref2 strains, possibly because of a general defect in the efficiency of mRNA 3'-end processing, the steady-state characteristics of a variety of normal cellular mRNAs remain unaffected. Sequencing of the complementing gene predicts the Ref2p product to be a novel, basic protein of 429 amino acids (M(r), 48,000) with a high-level lysine/serine content and some unusual features. Analysis in vitro, with a number of defined RNA substrates, confirms that efficient use of weak poly(A) sites requires Ref2p: endonucleolytic cleavage is carried out accurately but at significantly lower rates in extracts prepared from delta ref2 cells. The addition of purified, epitope-tagged Ref2p (Ref2pF) reestablishes wild-type levels of activity in these extracts, demonstrating direct involvement of this protein in the cleavage step of 3' mRNA processing. Together with the RNA-binding characteristics of Ref2pF in vitro, our results support an important contributing role for the REF2 locus in 3'-end processing. As the first gene genetically identified to participate in mRNA 3'-end maturation prior to the final polyadenylation step, REF2 provides an ideal starting point for identifying related genes in this event.  相似文献   

4.
A large-scale analysis of mRNA polyadenylation of human and mouse genes   总被引:22,自引:5,他引:17  
  相似文献   

5.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

6.
In Saccharomyces cerevisiae, in vitro mRNA cleavage and polyadenylation require the poly(A) binding protein, Pab1p, and two multiprotein complexes: CFI (cleavage factor I) and CPF (cleavage and polyadenylation factor). We characterized a novel essential gene, MPE1 (YKL059c), which interacts genetically with the PCF11 gene encoding a subunit of CFI. Mpe1p is an evolutionarily conserved protein, a homolog of which is encoded by the human genome. The protein sequence contains a putative RNA-binding zinc knuckle motif. MPE1 is implicated in the choice of ACT1 mRNA polyadenylation site in vivo. Extracts from a conditional mutant, mpe1-1, or from a wild-type extract immunoneutralized for Mpe1p are defective in 3'-end processing. We used the tandem affinity purification (TAP) method on strains TAP-tagged for Mpe1p or Pfs2p to show that Mpe1p, like Pfs2p, is an integral subunit of CPF. Nevertheless a stable CPF, devoid of Mpe1p, was purified from the mpe1-1 mutant strain, showing that Mpe1p is not directly involved in the stability of this complex. Consistently, Mpe1p is also not necessary for the processive polyadenylation, nonspecific for the genuine pre-mRNA 3' end, displayed by the CPF alone. However, a reconstituted assay with purified CFI, CPF, and the recombinant Pab1p showed that Mpe1p is strictly required for the specific cleavage and polyadenylation of pre-mRNA. These results show that Mpe1p plays a crucial role in 3' end formation probably by promoting the specific link between the CFI/CPF complex and pre-mRNA.  相似文献   

7.
8.
9.
Zhao H  Zheng J  Li QQ 《Plant physiology》2011,157(3):1546-1554
Messenger RNA (mRNA) maturation in eukaryotic cells requires the formation of the 3' end, which includes two tightly coupled steps: the committing cleavage reaction that requires both correct cis-element signals and cleavage complex formation, and the polyadenylation step that adds a polyadenosine [poly(A)] tract to the newly generated 3' end. An in vitro biochemical assay plays a critical role in studying this process. The lack of such an assay system in plants hampered the study of plant mRNA 3'-end formation for the last two decades. To address this, we have now established and characterized a plant in vitro cleavage assay system, in which nuclear protein extracts from Arabidopsis (Arabidopsis thaliana) suspension cell cultures can accurately cleave different pre-mRNAs at expected in vivo authenticated poly(A) sites. The specific activity is dependent on appropriate cis-elements on the substrate RNA. When complemented by yeast (Saccharomyces cerevisiae) poly(A) polymerase, about 150-nucleotide poly(A) tracts were added specifically to the newly cleaved 3' ends in a cooperative manner. The reconstituted polyadenylation reaction is indicative that authentic cleavage products were generated. Our results not only provide a novel plant pre-mRNA cleavage assay system, but also suggest a cross-kingdom functional complementation of yeast poly(A) polymerase in a plant system.  相似文献   

10.
Inactivation of poly(A) polymerase (encoded by PAP1) in Saccharomyces cerevisiae cells carrying the temperature-sensitive, lethal pap1-1 mutation results in reduced levels of poly(A)(+) mRNAs. Genetic selection for suppressors of pap1-1 yielded two recessive, cold-sensitive alleles of the gene RRP6. These suppressors, rrp6-1 and rrp6-2, as well as a deletion of RRP6, allow growth of pap1-1 strains at high temperature and partially restore the levels of poly(A)(+) mRNA in a manner distinct from the cytoplasmic mRNA turnover pathway and without slowing a rate-limiting step in mRNA decay. Subcellular localization of an Rrp6p-green fluorescent protein fusion shows that the enzyme residues in the nucleus. Phylogenetic analysis and the nature of the rrp6-1 mutation suggest the existence of a highly conserved 3'-5' exonuclease core domain within Rrp6p. As predicted, recombinant Rrp6p catalyzes the hydrolysis of a synthetic radiolabeled RNA in a manner consistent with a 3'-5' exonucleolytic mechanism. Genetic and biochemical experiments indicate that Rrp6p interacts with poly(A) polymerase and with Npl3p, a poly(A)(+) mRNA binding protein implicated in pre-mRNA processing and mRNA nuclear export. These findings suggest that Rrp6p may interact with the mRNA polyadenylation system and thereby play a role in a nuclear pathway for the degradation of aberrantly processed precursor mRNAs.  相似文献   

11.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   

12.
Three sequences in the vicinity of poly (A) addition sites are conserved among vertebrate mRNAs. We analyze the effects of single base changes in each position of AAUAAA and in the nucleotide to which poly (A) is added on 3' end formation in vitro. All 18 possible single base changes of the AAUAAA sequence greatly reduce addition of poly (A) to RNAs that end at the poly (A) addition site, and prevent cleavage of RNAs that extend beyond. The magnitude of reduction varies greatly with the position changed and the base introduced. For any given mutation, cleavage and polyadenylation are reduced to similar extents, strongly suggesting that the same factor interacts with AAUAAA in both reactions. Mutations at and near the conserved adenosine to which poly (A) is added disturb the accuracy, but not the efficiency, of 3' end formation. For example, point mutations at the conserved adenosine shift the 3' end of the most abundant 5' half-molecule downstream by a single nucleotide. The mechanism by which these mutations might exert their effects on the precision of 3' end formation are discussed.  相似文献   

13.
The pap1-5 mutation in poly(A) polymerase causes rapid depletion of mRNAs at restrictive temperatures. Residual mRNAs are polyadenylated, indicating that Pap1-5p retains at least partial activity. In pap1-5 strains lacking Rrp6p, a nucleus-specific component of the exosome complex of 3'-5' exonucleases, accumulation of poly(A)+ mRNA was largely restored and growth was improved. The catalytically inactive mutant Rrp6-1p did not increase growth of the pap1-5 strain and conferred much less mRNA stabilization than rrp6delta. This may indicate that the major function of Rrp6p is in RNA surveillance. Inactivation of core exosome components, Rrp41p and Mtr3p, or the nuclear RNA helicase Mtr4p gave different phenotypes, with accumulation of deadenylated and 3'-truncated mRNAs. We speculate that slowed mRNA polyadenylation in the pap1-5 strain is detected by a surveillance activity of Rrp6p, triggering rapid deadenylation and exosome-mediated degradation. In wild-type strains, assembly of the cleavage and polyadenylation complex might be suboptimal at cryptic polyadenylation sites, causing slowed polyadenylation.  相似文献   

14.
Polyadenylation is the second step in 3' end formation of most eukaryotic mRNAs. In Saccharomyces cerevisiae, this step requires three trans-acting factors: poly(A) polymerase (Pap1p), cleavage factor I (CF I) and polyadenylation factor I (PF I). Here, we describe the purification and subunit composition of a multiprotein complex containing Pap1p and PF I activities. PF I-Pap1p was purified to homogeneity by complementation of extracts mutant in the Fip1p subunit of PF I. In addition to Fip1p and Pap1p, the factor comprises homologues of all four subunits of mammalian cleavage and polyadenylation specificity factor (CPSF), as well as Ptalp, which previously has been implicated in pre-tRNA processing, and several as yet uncharacterized proteins. As expected for a PF I subunit, pta1-1 mutant extracts are deficient for polyadenylation in vitro. PF I also appears to be functionally related to CPSF, as it polyadenylates a substrate RNA more efficiently than Pap1p alone. Possibly, the observed interaction of the complex with RNA tethers Pap1p to its substrate.  相似文献   

15.
16.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

17.
B Schwer  X Mao    S Shuman 《Nucleic acids research》1998,26(9):2050-2057
Current models of mRNA decay in yeast posit that 3' deadenylation precedes enzymatic removal of the 5' cap, which then exposes the naked end to 5' exonuclease action. Here, we analyzed gene expression in Saccharomyces cerevisiae cells bearing conditional mutations of Ceg1 (capping enzyme), a 52 kDa protein that transfers GMP from GTP to the 5' end of mRNA to form the GpppN cap structure. Shift of ceg1 mutants to restrictive temperature elicited a rapid decline in the rate of protein synthesis, which correlated with a sharp reduction in the steady-state levels of multiple individual mRNAs. ceg1 mutations prevented the accumulation of SSA1 and SSA4 mRNAs that were newly synthesized at the restrictive temperature. Uncapped poly(A)+ SSA4 mRNA accumulated in cells lacking the 5' exoribonuclease Xrn1. These findings provide genetic evidence for the long-held idea that the cap guanylate is critical for mRNA stability. The deadenylation-decapping-degradation pathway appears to be short-circuited when Ceg1 is inactivated.  相似文献   

18.
19.
20.
In Saccharomyces cerevisiae, the single poly(A) binding protein, Pab1, is the major ribonucleoprotein associated with the poly(A) tails of mRNAs in both the nucleus and the cytoplasm. We found that Pab1 interacts with Rna15 in two-hybrid assays and in coimmunoprecipitation experiments. Overexpression of PAB1 partially but specifically suppressed the rna15-2 mutation in vivo. RNA15 codes for a component of the cleavage and polyadenylation factor CF I, one of the four factors needed for pre-mRNA 3'-end processing. We show that Pab1 and CF I copurify in anion-exchange chromatography. These data suggest that Pab1 is physically associated with CF I. Extracts from a thermosensitive pab1 mutant and from a wild-type strain immunoneutralized for Pab1 showed normal cleavage activity but a large increase in poly(A) tail length. A normal tail length was restored by adding recombinant Pab1 to the mutant extract. The longer poly(A) tails were not due to an inhibition of exonuclease activities. Pab1 has previously been implicated in the regulation of translation initiation and in cytoplasmic mRNA stability. Our data indicate that Pab1 is also a part of the 3'-end RNA-processing complex and thus participates in the control of the poly(A) tail lengths during the polyadenylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号