首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Forestry practitioners contacted us with their concerns about a recent review article by Buchholz T, Friedland AJ, Hornig CE, Keeton WS, Zanchi G, Nunery J (2013) GCB Bioenergy who questioned the way soil carbon is treated in many models and protocols, and indicated that an increasing number of research studies showed meaningful soil organic carbon (SOC) loss as a result of forest management. We revisit the major studies cited in the review and present a more complete look at the results, consistently treat forest floor carbon as a separate pool, discuss differences in interpretation, and suggest opportunities to advance the state of knowledge regarding SOC and forest carbon accounting. Overall, we conclude that the literature continues to support the current default assumption of little or no change in mineral SOC when sound forest management practices are followed.  相似文献   

2.
由化石燃料燃烧和土地利用变化引起的全球气候变暖是地球上最严重的人为干扰之一,对陆地生态系统结构和功能产生重要的影响。土壤有机碳(SOC)是陆地生态系统最大的碳库,其微小变化都会影响全球碳平衡和气候变化。近30年来,国内外学者在不同森林生态系统相继开展了野外模拟增温对SOC分解的影响及其调控机制研究。基于在全球建立的26个野外模拟气候变暖实验平台,系统分析增温对森林生态系统SOC分解的影响格局和潜在机制,发现增温通常促进森林SOC的分解,对气候变暖产生正反馈作用。然而,因增温方式和持续时间、土壤微生物群落结构和功能的多样性、SOC结构和组成的复杂性、植物-土壤-微生物之间相互作用以及森林类型等不同而存在差异,导致人们对森林SOC分解响应气候变暖的程度及时空格局变化缺乏统一的认识,且各类生物和非生物因子的相对贡献尚不清楚。基于已有研究,从土壤微生物群落结构和功能、有机碳组分以及植物-土壤-微生物互作3个方面构建了气候变暖影响SOC分解的概念框架,并进一步阐述了今后的重点研究方向,以期深入理解森林生态系统碳-气候反馈效应,为制定森林生态系统管理措施和实现"碳中和"提供科学依据。1)加强模拟增温对不同森林生态系统(特别是热带亚热带森林生态系统) SOC分解的长期观测研究,查明SOC分解的时空动态特征;2)加强土壤微生物功能群与SOC分解之间关系的研究,揭示SOC分解对增温响应的微生物学机制;3)形成统一的SOC组分研究方法,揭示不同碳组分对增温的响应特征和机制;4)加强森林生态系统植物-土壤-微生物间相互作用对模拟增温的响应及其对SOC分解调控的研究;5)加强模拟增温与其他全球变化因子(例如降水格局变化、土地利用变化、大气氮沉降)对SOC分解的交互作用,为更好评估未来全球变化背景下森林土壤碳动态及碳汇功能的维持提供理论基础。  相似文献   

3.
We present results from modelling studies, which suggest that, at most, only about 10–20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported.  相似文献   

4.
The role of fire in the boreal carbon budget   总被引:12,自引:0,他引:12  
  相似文献   

5.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

6.
Confidence in model estimates of soil CO2 flux depends on assumptions regarding fundamental mechanisms that control the decomposition of litter and soil organic carbon (SOC). Multiple hypotheses have been proposed to explain the role of lignin, an abundant and complex biopolymer that may limit decomposition. We tested competing mechanisms using data-model fusion with modified versions of the CN-SIM model and a 571-day laboratory incubation dataset where decomposition of litter, lignin, and SOC was measured across 80 soil samples from the National Ecological Observatory Network. We found that lignin decomposition consistently decreased over time in 65 samples, whereas in the other 15 samples, lignin decomposition subsequently increased. These “lagged-peak” samples can be predicted by low soil pH, high extractable Mn, and fungal community composition as measured by ITS PC2 (the second principal component of an ordination of fungal ITS amplicon sequences). The highest-performing model incorporated soil biogeochemical factors and daily dynamics of substrate availability (labile bulk litter:lignin) that jointly represented two hypotheses (C substrate limitation and co-metabolism) previously thought to influence lignin decomposition. In contrast, models representing either hypothesis alone were biased and underestimated cumulative decomposition. Our findings reconcile competing hypotheses of lignin decomposition and suggest the need to precisely represent the role of lignin and consider soil metal and fungal characteristics to accurately estimate decomposition in Earth-system models.  相似文献   

7.
High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.  相似文献   

8.
土壤有机碳尤其是活性有机碳可快速反映土壤肥力和土壤质量的恢复程度。研究了南方红壤侵蚀地3种典型人工恢复林(马尾松与阔叶复层林(Pinus massoniana-broadleaved multiple layer forest(PB))、木荷与马尾松混交林(Schima superba-Pinus massoniana mixed forest(SP))、阔叶混交林(broad-leaved mixed forest(BF)))土壤(0—60 cm)总有机碳和不同活性有机碳的垂直分布特征及其差异。结果表明:不同恢复林分土壤总有机碳(SOC)含量和有机碳储量均表现为PBSPBF,均随土层深度的增加而逐渐降低;土壤表层有机碳富集系数为0.49—0.55,表明表层土壤具有较高的有机碳恢复水平和保持强度。不同林分土壤易氧化有机碳(ROC)、水溶性有机碳(DOC)和微生物量碳(MBC)含量变化范围为0.92—9.17 g/kg、535.89—800.46 mg/kg和27.24—261.31 mg/kg,且均随土层深度的增加而降低,土壤活性有机碳含量总体以BF较高。土壤活性有机碳分配比例以ROC/SOC最高,DOC/SOC次之,MBC/SOC最低,且随土层深度的增加,ROC/SOC的值呈逐渐降低趋势,DOC/SOC的值却呈逐渐升高趋势,MBC/SOC(微生物熵)则变化规律不明显;不同林分间土壤活性有机碳分配比例以BF最高,表明阔叶混交林更有利于活性碳的积累。因此,对于红壤侵蚀地森林恢复初期,可适当密植和立体种植,以提高土壤碳储量和土壤肥力,并在马尾松等先锋树种林分中补植阔叶树种,以增加土壤活性有机碳含量,从而有利于退化生态系统土壤速效养分和土壤功能的快速恢复。  相似文献   

9.
以分布在中国不同气候区的131个成熟天然林土壤为研究对象,测定不同土层(0~10、10~20、20~30、30~50和50~100 cm)土壤有机碳(SOC)密度,分析其与气象因子、土壤性质的关系,研究天然林SOC垂直分布特征及其影响机理.结果表明:温带针叶林、温带落叶阔叶林、亚热带落叶阔叶林和亚热带常绿阔叶林0~30...  相似文献   

10.
田耀武  曾立雄  黄志霖  肖文发  向勇 《生态学报》2015,35(22):7503-7510
了解森林土壤有机碳(SOC)的深度分布模式对正确估算森林碳储量,充分发挥森林碳汇功能,减缓全球气候变化有着重要意义。选取寒温带针叶林、温带落叶林、亚热带针阔混交林、热带常绿阔叶林等4类森林生物群系,建立SOC深度分布数据库,构建SOC质量密度的深度分布模型;使用Nash-Sutcliffe效率系数(E)、误差百分比(PE)、决定系数(R~2)等统计参量评定模型的模拟效果;利用构建的深度分布模型外推更深层SOC密度。研究结果表明:(1)本文所构建的森林SOC深度分布模型模拟值与观测值较为吻合,Nash-Sutcliffe效率E、误差百分比PE和决定系数R~2平均为0.74、6.95%、0.88(P0.05),模型模拟能力较高(E0.6),模拟误差值低于可接受的临界值(PE±15%),说明构建的模型可以对该地区森林SOC密度值进行估算;(2)寒温带针叶林0—20 cm层SOC质量密度较高,热带常绿阔叶林较低;20 cm以下则是寒温带针叶林较低,热带常绿阔叶林较高,热带常绿阔叶林具有更深层的SOC分布;用0—100 cm深度的SOC来表征区域SOC储量时结果偏低。若考虑0—200 cm深度,0—100 cm深度SOC值平均偏低约21.8%,在热带地区这种偏低趋势可能更加突出,误差可能更大。(3)模型对表层SOC密度有偏低预测趋势,对深层SOC密度预测值可能偏高;作为一个森林SOC深度分布模拟工具,模型可以在有限区域条件下估算不同深度SOC密度值。  相似文献   

11.
不同植茶年限土壤团聚体及其有机碳分布特征   总被引:21,自引:0,他引:21  
李玮  郑子成  李廷轩  刘敏英 《生态学报》2014,34(21):6326-6336
作为土壤结构的基本单元和土壤肥力的重要组成部分,土壤团聚体对土壤的物理、化学和生物特性均有重要影响。试验选取了雅安市名山区中峰乡生态茶园区12—15a、20—22a、30—33a和50a的茶园,研究其土壤团聚体及其有机碳总量、储量和活性组分的分布特征,探究植茶年限对土壤团聚体及其有机碳分布的影响。结果表明:(1)研究区土壤以2 mm粒级团聚体为主,约为70%—80%,且在0—20 cm土层植茶20—22a土壤团聚体含量最高;(2)茶园土壤团聚体有机碳含量随团聚体粒级的减小而增加,最大值出现在0.25 mm粒级团聚体,且在植茶50a时达最高值,0—20 cm土层团聚体有机碳含量均高于20—40 cm,土壤团聚体水溶性有机碳和微生物生物量碳随植茶年限的延长呈先增加后降低的变化趋势,植茶30—33a时含量最高,且小粒级团聚体水溶性有机碳含量较高而微生物量碳较低;(3)土壤团聚体对有机碳的贡献率约有70%来自2 mm粒级团聚体,团聚体有机碳储量随植茶年限延长呈增加的趋势,不同植茶年限0—20 cm土层各粒级团聚体有机碳储量均高于20—40 cm土层,且以0.25 mm粒级团聚体有机碳储量最高。研究结果在一定程度上揭示了不同植茶年限土壤团聚体及其有机碳的分布特征,可为改善区域土壤质量及实施退耕还茶工程提供理论指导。  相似文献   

12.
Phosphorus mineralization is chemically coupled with organic matter (OM) decomposition in surface horizons of a mixed-conifer forest soil from the Sierra Nevada, California, and is also affected by the disturbance caused by forest harvesting. Solution13C nuclear magnetic resonance (NMR) spectroscopy of NaOH extracts revealed a decrease of O-alkyl and alkyl-C fractions with increasing degree of decomposition and depth in the soil profile, while carbonyl and aromatic C increased. Solid-state13C-NMR analysis of whole soil samples showed similar trends, except that alkyl C increased with depth. Solution31P-NMR indicated that inorganic P (P1) increased with increasing depth, while organic-P (Po) fractions decreased. Close relationships between P mineralization and litter decomposition were suggested by correlations between P1 and C fractions (r = 0.82, 0.81, –0.87, and –0.76 for carbonyl, aromatic, alkyl and O-alkyl fractions, respectively). Correlations for diester-P and pyrophosphate with O-alkyl (r = 0.63 and 0.84) and inverse correlations with aromatics (r = –0.74 and –0.72) suggest that mineralization of these P fractions coincides with availability of C substrate. A correlation between monoester P and alkyl C (r = 0.63) suggests mineralization is linked to breakdown of structural components of the plant litter. NMR analyses, combined with Hedley-P fractionation, suggest that post-harvest buildup of labile P in decomposed litter increases the potential for leaching of P during the first post-harvest season, but also indicates reduced biological activity that transports P from litter to the mineral soil. Thus, P is temporarily stored in decomposed litter, preventing its fixation by mineral oxides. In the mineral horizons,31P-NMR provides evidence of decline in biologically-available P during the first post-harvest season.  相似文献   

13.
The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2–314 years ago over a vast region with a range of ? mean annual temperature of 3°C and one of ? 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico‐chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo‐metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.  相似文献   

14.
有机物料还田对双季稻田土壤有机碳及其活性组分的影响   总被引:4,自引:0,他引:4  
有机物料还田是提升农田土壤有机碳、培肥土壤的重要措施。为探讨不同有机物料的还田效果,采用室外培养方法,研究了在等碳输入条件下,施用水稻秸秆、紫云英、生物有机肥、猪粪和水稻秸秆生物炭对洞庭湖双季稻区潮土有机碳和活性有机碳组分含量的影响。结果表明: 经过180 d的培养试验,与不施用有机物料相比,施用有机物料提高了土壤活性有机碳含量。生物有机肥、猪粪和水稻秸秆生物炭处理分别使土壤有机碳含量显著提升了26.1%、9.7%和30.7%,水稻秸秆和紫云英对土壤有机碳含量的提升效应在试验期间并不显著。水稻秸秆和紫云英还田更有利于土壤可溶性有机碳和微生物生物量碳的积累,猪粪更有利于土壤可溶性有机碳的积累,生物有机肥更有利于土壤微生物生物量碳和易氧化有机碳的积累,水稻秸秆生物炭则更有利于土壤微生物生物量碳和轻组有机碳的积累。与水稻秸秆还田相比,紫云英、生物有机肥、猪粪和水稻秸秆生物炭还田使土壤碳库管理指数分别提高了31.8%、111.6%、62.2%和50.7%。从土壤固碳和土壤碳库管理指数来看,生物有机肥、猪粪和水稻秸秆生物炭的还田效果优于水稻秸秆和紫云英还田。  相似文献   

15.
Promotion of soil organic carbon (SOC) sequestration as a potential solution to support climate change mitigation as well as more sustainable farming systems is rising steeply. As a result, voluntary carbon markets are rapidly expanding in which farmers get paid per tons of carbon dioxide sequestered. This market relies on protocols using simulation models to certify that increases in SOC stocks do indeed occur and generate tradable carbon credits. This puts tremendous pressure on SOC simulation models, which are now expected to provide the foundation for a reliable global carbon credit generation system. There exist an incredibly large number SOC simulation models which vary considerably in their applicability and sensitivity. This confronts practitioners and certificate providers with the critical challenge of selecting the models that are appropriate to the specific conditions in which they will be applied. Model validation and the context of said validation define the boundaries of applicability of the model, and are critical therefore to model selection. To date, however, guidelines for model selection are lacking. In this review, we present a comprehensive review of existing SOC models and a classification of their validation contexts. We found that most models are not validated (71%), and out of those validated, validation contexts are overall limited. Validation studies so far largely focus on the global north. Therefore, countries of the global south, the least emitting countries that are already facing the most drastic consequences of climate change, are the most poorly supported. In addition, we found a general lack of clear reporting, numerous flaws in model performance evaluation, and a poor overall coverage of land use types across countries and pedoclimatic conditions. We conclude that, to date, SOC simulation does not represent an adequate tool for globally ensuring effectiveness of SOC sequestration effort and ensuring reliable carbon crediting.  相似文献   

16.
Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate‐carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long‐term field incubation experiment with deep soil collars (0–70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi‐pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate.  相似文献   

17.
基于华北地区3个长期定位试验站点(河南郑州、山东禹城和河北曲周)的试验数据,用站点实测作物产量和土壤有机碳(SOC)双标准对Daycent模型进行校验和验证.结果表明: 模型参数组合对作物产量和SOC的长期变化动态拟合效果良好,表明Daycent模型可较好地模拟作物产量和SOC的动态变化.用校验和验证了的模型对3个站点在气候情景RCP 4.5下4种不同管理措施(单施化肥NPK、化肥+有机肥MNPK、秸秆还田SNPK、免耕+秸秆NT)下SOC的变化动态进行模拟.结果表明: 郑州站点NPK、MNPK、SNPK处理中,MNPK处理的SOC相对年平均增幅最高,2001—2050年间的SOC年增幅达1.7%,其次为SNPK处理(年均增幅为1.3%)和NPK处理(年均增幅为0.8%),从长远角度看,增施有机肥对灌溉轻壤土有机碳的增加有明显效果.在禹城站点,研究期间,MNPK处理的SOC年均增幅(0.4%)高于NPK处理(0.3%),由于该站点土壤有轻度盐化特征,因此各措施下SOC的增幅较低.在曲周站点,NT处理更有利于SOC的增加,研究期间的SOC年均增幅达1.3%,远高于SNPK处理(0.7%)和NPK处理(0.4%).华北地区气温适宜、灌溉条件好、具备秸秆还田及免耕机械条件,免耕+秸秆还田是该地区增加SOC的较好农作管理措施.  相似文献   

18.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   

19.
以集约和粗放经营的毛竹(Phyllostachys heterocycla ‘Pubescens’)林为研究对象, 探讨了春季毛竹林集约经营后土壤有机碳的变化。结果表明: (1)集约经营后毛竹林0-10和10-20 cm土层土壤总有机碳含量分别下降了7.01%和18.90%, 易氧化碳含量分别下降了31.22%和46.03%, 0-20 cm土层轻组有机质含量下降了19.87%。(2)两种毛竹林的土壤有机碳含量在剖面上整体上均随土层深度的增加而呈下降趋势, 但下降幅度不同。粗放经营的毛竹林土壤易氧化碳的剖面特征与总有机碳相似, 而集约经营的毛竹林存在明显差异。轻组有机质具有表聚性, 主要分布在土壤表层(0-20 cm)。(3)土壤总有机碳、易氧化碳、轻组有机质与土壤养分之间的相关性均达到极显著水平(p < 0.01), 总有机碳与速效磷显著相关(p < 0.05)。(4)集约经营后, 毛竹林0-10 cm土层土壤易氧化碳的碳素有效率和土壤碳库活度分别下降了26.01%和50.52%, 差异显著(p < 0.05); 10-20 cm土层分别下降了35.51%和54.41%。因此, 施加适当配比的有机肥和无机肥, 有利于土壤中各种有机碳的积累, 也可改善土壤的生物化学活性。  相似文献   

20.
采用时空互代法,以广西北部低山丘陵地区不同林龄(1、2、3、4、5和8 a)桉树人工林为研究对象,探讨林龄对桉树人工林地土壤碳库管理指数的影响及其规律。结果表明:(1)随着林龄的增加,土壤有机碳总体表现为增加的趋势,1~8 a桉树土壤有机碳范围在5.79~15.57 g·kg-1之间,随着土层的加深而降低; 0~40 cm土层土壤有机碳平均含量表现为8 a>5 a>3 a>4 a>2 a>1 a。(2)土壤非活性有机碳、碳储量随林龄和土层的变化规律与土壤有机碳基本一致。土壤活性有机碳含量大小依次表现为8 a>5 a>4 a>3 a>2a> 1 a,占土壤有机碳的比例随林龄变化无明显规律,8 a和其他林龄间均具有显著差异。(3)碳库管理指数随林龄增加整体呈上升趋势,8 a桉树人工林土壤碳组分含量及碳库管理指数均高于10 a对照马尾松林。碳库管理指数与土壤有机碳、非活性有机碳、活性有机碳、碳储量、碳库活度、全氮、容重呈极显著或显著的相关性,不同林龄和土层间碳库管理指数有差异性。适当延长桉树人工林的轮伐周期,减...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号