首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
神经退变和再生的构筑变化   总被引:4,自引:0,他引:4  
将夹伤的大鼠坐骨神经分离成单根纤维,观察98d内轴突和许旺细胞的构筑变化过程发现,损伤既使轴浆转运阻断、积累的细胞器退变,也使髓鞘板层,特别是斯兰氏切迹撕裂、变形或侵入轴突。轴突或髓鞘虽可各呈单一的退变,但以两者并存多见。伤后1d即出现富含微管的再生芽,它被增殖的许旺细胞突起及其基底膜包绕,并逐步发育成熟。根据再生的特征性构筑变化,提出了再生芽、无髓和有髓纤维、斯兰氏切迹、朗氏结与神经小束的初见、发育和成熟高峰期的时间顺序。无髓纤维的发育成熟早于有髓纤维。  相似文献   

2.
科学名词必须确切的重要性不言而喻,但经常由于对某种现象早期片面的认识而使用了不恰当的命名,尔后又因此命名流传日久,虽明知其有误而仍从旧。名词上的谬误常可引起概念上的混乱,活性物质在神经元胞浆中的转运即为一例。笔者在教学与学术交流中对因此而造成的误解,深有体会。一、物质在胞浆中转运是一种主动运动,不是被动流动 1948年Weiss与Hiscoe以组织学方法发现,压迫外周再生神经,引起近心端肿胀和轴突扩张;去除压迫则肿胀消失,从而最先用实验证明了轴浆中的物质可自近心端向远端转运,并首创“轴浆流”(axonal flow)的概念。70年代初,Weiss又提出轴突蠕动驱动物质在神经  相似文献   

3.
神经元胞浆转运与外周神经病   总被引:4,自引:0,他引:4  
外周神经系统的神经元在结构和功能上有明显的特点:轴突的表面积或容积比胞体大上千倍,但轴浆中没有合成蛋白质的粗面内质网,核蛋白体也很少;轴突生长发育、代谢更新以及再生修复所需的结构物质必须由胞体合成,经轴浆转运到轴突的特定部位;轴突传导冲动、释放递质所需的能源、递质和有关的代谢酶,以及其他功能物质也有赖于胞体内合成与胞浆中转运。外周神经这种分化上的特异性,不仅说明胞浆转运有重要的生理意义,还说  相似文献   

4.
再生神经中微管,神经丝与轴突截面积的变化   总被引:2,自引:0,他引:2  
用电镜及图象分析的方法研究了再生轴突中微管、神经丝与轴突截面积的变化,发现神经再生过程中微管及神经丝的密度增加,并与轴突截面积呈相关关系,而且微管的变化更早,更明显。由于微管参与了轴浆转运的机制,微管的增加提示其在神经再生中起了重要的作用。  相似文献   

5.
本文用免疫细胞化学法研究正常和再生的大白鼠外周神经中脱辅基脂蛋白E(ApoE)和低密度脂蛋白(LDL)受体的运输特性,发现在正常的外周神经中,ApoE及LDL受体在轴浆中均可沿轴突正行和逆行运输;再生的神经可产生ApoE,ApoE可逆行向细胞体转运。ApoE及LDL受体运输特性的研究为ApoE及LDL受体参与神经损伤后的修复和再生提供了进一步的证据。  相似文献   

6.
本文用免疫细胞化学法研究正常和再生的大白鼠外周神经中脱辅基脂蛋白E(ApoE)和低密度脂蛋白(LDL)受体的运输特性,发现在正常的外周神经中,ApoE及LDL受体在轴浆中均可沿轴突正行和逆行运输;再生的神经可产生ApoE,ApoE可逆行向细胞体转运。ApoE及LDL受体运输特性的研究为ApoE及LDL受体参与神经损伤后的修复和再生提供了进一步的证据。  相似文献   

7.
轴浆转运在神经再生中的作用   总被引:11,自引:1,他引:10  
甘思德  易钟煜 《动物学报》1989,35(2):158-163
夹伤坐骨神经阻断标记蛋白在轴浆中的快、慢转运。3天后转运再现。第14天的转运距离与对照相似,说明再生神经的转运动能基本恢复。用快、慢转运测出的14天平均再生速度分别为1.77±0.14与1.96±0.07mm/d,比对照神经的正常生长速度快6.3—7倍,提示再生需要更多的转运物质。进一步发现再生神经中某些标记蛋白(慢转运波W1)的转运速度为10.25±0.66mm/d,约比对照快1倍,因此这些标记蛋白可能包含适应再生需要而加速转运的结构和功能物质。  相似文献   

8.
雪旺氏细胞与中枢神经再生   总被引:8,自引:0,他引:8  
雪旺氏细胞是周围神经系统的胶质细胞,具有非常活跃的生理功能,它能表达数种神经营养因子,防止受损神经元胞体的死亡,为轴突再生提供先决条件;SC分泌细胞外基质成分和细胞粘着分子,为轴突提供良好的再生环境,支持轴突再生并引导再生的轴突重新支配靶组织。离体实验表明,SCs本身及其分泌的生物活性物质能支持中枢神经突起的生长,将SCs作为移植材料进行移植能促进视神经、脊髓、隔-海马通路等再生。由于雪旺氏细胞有可能从自体获得,将为中枢神经损伤的修复开辟一条新途径。  相似文献   

9.
神经迁移因子在血管系统中的表达与功能   总被引:1,自引:0,他引:1  
神经迁移因子是近10年来在发育神经生物学中的研究热点,主要由ephrin、neuropilin、Slit和netrin四大家族成员构成,其主要功能是吸引或排斥神经元轴突的迁移,在神经系统中发挥着重要作用。现在,越来越多的实验证据表明:神经迁移因子的作用不仅仅局限在神经系统发育过程中,在血管发生或新生血管形成中同样具有不可替代的功能。  相似文献   

10.
神经元轴突外包裹的髓鞘结构对于提高神经元传导速率,维持神经系统稳定性有重要作用。在中枢神经系统中,髓鞘主要由少突胶质细胞形成。成髓鞘过程在内源性和外源性因素的共同调节下进行,神经元轴突信号在这个过程中扮演重要角色。髓鞘发育过程依赖于轴突的促进信号和抑制信号的相互平衡:促进信号包括层粘连蛋白和神经调节素等,神经元电信号能启动并促进髓鞘再生;抑制信号包括细胞黏附分子以及Notch信号。本文综述了一些因子尤其是神经元信号在髓鞘发育中的作用,也讨论了脱髓鞘疾病中神经元如何参与髓鞘再生。这些总结有助于理解髓鞘发育的机制,也有助于脱髓鞘疾病的研究和治疗。  相似文献   

11.
Immuno-electron microscopic localization of sodium channels at nodes of Ranvier within adult optic nerve was demonstrated with polyclonal antibody 7493. The 7493 antisera, which is directed against purified sodium channels from rat brain, recognizes a 260 kDa protein in immunoblots of the crude glycoprotein fraction from adult rat optic nerve. Intense immunoreactivity with 7493 antisera was observed at nodes of Ranvier. Axon membrane at the node was densely stained, whereas paranodal and internodal axon membrane did not exhibit immunoreactivity. The axoplasm beneath the nodal membrane displayed variable immunostaining. Neither terminal paranodal oligodendroglial loops nor oligodendrocyte plasmalemma were immunoreactive with 7493 antisera. However, perinodal astrocyte processes exhibited intense immunoreactivity with the anti-sodium channel antisera. Optic nerves incubated with pre-immune sera, or with 7493 antisera that had been pre-adsorbed with purified sodium channel protein, displayed no immunoreactivity. These results demonstrate localization of sodium channels at high density at mammalian nodes of Ranvier and in some perinodal astrocyte processes. The latter observation offers support for an active role for perinodal astrocyte processes in the aggregation of sodium channels within the axon membrane at the node of Ranvier.  相似文献   

12.
Kole MH 《Neuron》2011,71(4):671-682
In central neurons the first node of Ranvier is located at the first axonal branchpoint, ~ 100 μm from the axon initial segment where synaptic inputs are integrated and converted into action potentials (APs). Whether the first node contributes to this signal transformation is not well understood. Here it was found that in neocortical layer 5 axons, the first branchpoint is required for intrinsic high-frequency (≥ 100 Hz) AP bursts. Furthermore, block of nodal Na(+) channels or axotomy of the first node in intrinsically bursting neurons depolarized the somatic AP voltage threshold (~ 5 mV) and eliminated APs selectively within a high-frequency cluster in response to steady currents or simulated synaptic inputs. These results indicate that nodal persistent Na(+) current exerts an anterograde influence on AP initiation in the axon initial segment, revealing a computational role of the first node of Ranvier beyond conduction of the propagating AP.  相似文献   

13.
Rydmark  M  Berthold  C.-H  Gatzinsky  K. P 《Brain Cell Biology》1998,27(2):99-108
We have calculated the number of paranodal Schwann cell mitochondria in adult feline ventral and dorsal lumbar spinal roots using ultrastructural serial section analysis. Distinct accumulations of paranodal mitochondria were noted in nerve fibres more than 4-5 mm in diameter. The calculated number of paranodal mitochondria increased linearly with fibre diameter from a few hundred up to 20 000-30 000 per node. A linear increase in the number of paranodal mitochondria per node also appeared as a function of nodal variables such as ‘nodal axon membrane area’, ‘nodal Schwann cell membrane area’, and ‘node gap extracellular volume’. In large fibres (D=15-18 mm), a calculated number of about 20 000 paranodal Schwann cell mitochondria were accumulated at each node of Ranvier and related to nodal axon membrane area of about 20 mm2. Our calculations indicate that, on the average, 1000 paranodal Schwann cell mitochondria with a total volume of 6.7 mm3, a total outer membrane area of 250 mm2 and a total inner membrane area of 580 mm2 projected to each mm2 of the nodal axon membrane via the nodal Schwann cell brush border.  相似文献   

14.
Summary Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.  相似文献   

15.
Electric organs in Sternarchidae are of neural origin, in contrast to electric organs in other fish, which are derived from muscle. The electric organ in Sternarchus is composed of modified axons of spinal neurons. Fibers comprising the electric organ were studied by dissection and by light- and electron microscopy of sectioned material. The spinal electrocytes descend to the electric organ where they run anteriorly for several segments, turn sharply, and run posteriorly to end blindly at approximately the level where they enter the organ. At the level of entry into the organ, and where they turn around, the axons are about 20 µ in diameter; the nodes of Ranvier have a typical appearance with a gap of approximately 1 µ in the myelin. Anteriorly and posteriorly running parts of the fibers dilate to a diameter of approximately 100 µ, and then taper again. In proximal and central regions of anteriorly and posteriorly running parts, nodal gaps measure approximately 1 µ along the axon. In distal regions of anteriorly and posteriorly running parts are three to five large nodes with gaps measuring more than 50 µ along the fiber axis. Nodes with narrow and with wide gaps are distinguishable ultrastructurally; the first type has a typical structure, whereas the second type represents a new nodal morphology. At the typical nodes a dense cytoplasmic material is associated with the axon membrane. At large nodes, the unmyelinated axon membrane is elaborated to form a closely packed layer of irregular polypoid processes without a dense cytoplasmic undercoating. Electrophysiological data indicate that typical nodes in proximal regions of anteriorly and posteriorly running segments actively generate spikes, whereas large distal nodes are inactive and act as a series capacity. Increased membrane surface area provides a morphological correlate for this capacity. This electric organ comprises a unique neural system in which axons have evolved so as to generate external signals, an adaptation involving a functionally significant structural differentiation of nodes of Ranvier along single nerve fibers.  相似文献   

16.
A node of Ranvier in which the nodal axon is post-synaptic to a terminal axon was found in the cerebral cortex of the rat near by an epileptic focus. This type of synapse is in itself a rare observation but is also worthwile considering because of its vicinity with this focus.  相似文献   

17.
This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity.  相似文献   

18.
Gating currents in the node of Ranvier: voltage and time dependence.   总被引:4,自引:0,他引:4  
Like the axolemma of the giant nerve fibre of the squid, the nodal membrane of frog myelinated nerve fibres after blocking transmembrane ionic currents exhibits asymmetrical displacement currents during and after hyperpolarizing and depolarizing voltage clamp pulses of equal size. The steady-state distribution of charges as a function of membrane potential is consistent with Boltzmanns law (midpoint potential minus 33.7 mV; saturation value 17200 charges/mum-2). The time course of the asymmetry current and the voltage dependence of its time constant are consistent with the notion that due to a sudden change in membrane potential the charges undergo a first order transition between two configurations. Size and voltage dependence of the time constant are similar to those of the activation of the sodium conductance assuming m-2h kinetics. The results suggest that the presence of ten times more sodium channels (5000/mum-2) in the node of Ranvier than in the squid giant axon with similar sodium conductance per channel (2-3 pS).  相似文献   

19.
Saltatory conduction in myelinated axons requires organization of the nodes of Ranvier, where voltage-gated sodium channels are prominently localized [1]. Previous results indicate that alphaII-spectrin, a component of the cortical cytoskeleton [2], is enriched at the paranodes [3, 4], which flank the node of Ranvier, but alphaII-spectrin's function has not been investigated. Starting with a genetic screen in zebrafish, we discovered in alphaII-spectrin (alphaII-spn) a mutation that disrupts nodal sodium-channel clusters in myelinated axons of the PNS and CNS. In alphaII-spn mutants, the nodal sodium-channel clusters are reduced in number and disrupted at early stages. Analysis of chimeric animals indicated that alphaII-spn functions autonomously in neurons. Ultrastructural studies show that myelin forms in the posterior lateral line nerve and in the ventral spinal cord in alphaII-spn mutants and that the node is abnormally long; these findings indicate that alphaII-spn is required for the assembly of a mature node of the correct length. We find that alphaII-spectrin is enriched in nodes and paranodes at early stages and that the nodal expression diminishes as nodes mature. Our results provide functional evidence that alphaII-spectrin in the axonal cytoskeleton is essential for stabilizing nascent sodium-channel clusters and assembling the mature node of Ranvier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号