首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases.  相似文献   

2.
3.
Thermoplasma acidophilum is a thermo-acidophilic archaeon. We purified tRNALeu (UAG) from T. acidophilum using a solid-phase DNA probe method and determined the RNA sequence after determining via nucleoside analysis and m7G-specific aniline cleavage because it has been reported that T. acidophilum tRNA contains m7G, which is generally not found in archaeal tRNAs. RNA sequencing and liquid chromatography–mass spectrometry revealed that the m7G modification exists at a novel position 49. Furthermore, we found several distinct modifications, which have not previously been found in archaeal tRNA, such as 4-thiouridine9, archaeosine13 and 5-carbamoylmethyuridine34. The related tRNA modification enzymes and their genes are discussed.  相似文献   

4.
Based on computer modeling and with the use of energy minimisation procedure, we show that the bulged nucleotide 47 in the yeast tRNA(Phe) structure plays an important steric role, allowing the formation of canonical tertiary interactions 15-48 and 22-46 within the D-domain. The absence of nucleotide 47 can be compensated by the presence of a wobble pair U13-G22, whose unusual stereochemistry permits as well the formation of the canonical tertiary interactions. The tRNA database show that the vast majority of the cytosolic tRNAs have either a nucleotide at position 47 or a wobble pair U13-G22. On the contrary, many mitochondrial tRNAs, having a Watson-Crick pair 13-22, do not have nucleotide in position 47, which suggests that their tertiary interactions within the D-domain must differ from those in cytosolic tRNAs.  相似文献   

5.
The exquisite specificity of the adenine-responsive riboswitch toward its cognate metabolite has been shown to arise from the formation of a Watson-Crick interaction between the adenine ligand and residue U65. A recent crystal structure of a U65C adenine aptamer variant has provided a rationale for the phylogenetic conservation observed at position 39 for purine aptamers. The G39-C65 variant adopts a compact ligand-free structure in which G39 is accommodated by the ligand binding site and is base-paired to the cytosine at position 65. Here, we demonstrate using a combination of biochemical and biophysical techniques that the G39-C65 base pair not only severely impairs ligand binding but also disrupts the functioning of the riboswitch in vivo by constitutively activating gene expression. Folding studies using single-molecule FRET revealed that the G39-C65 variant displays a low level of dynamic heterogeneity, a feature reminiscent of ligand-bound wild-type complexes. A restricted conformational freedom together with an ability to significantly fold in monovalent ions are exclusive to the G39-C65 variant. This work provides a mechanistic framework to rationalize the evolutionary exclusion of certain nucleotide combinations in favor of sequences that preserve ligand binding and gene regulation functionalities.  相似文献   

6.
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.  相似文献   

7.
The 3' terminus of tRNAs has the universally conserved bases C74C75A76 that interact with the ribosomal large subunit. In the ribosomal P site, bases C74 and C75 of tRNA, form Watson-Crick base-pairs with G2252 and G2251, respectively, present in the conserved P-loop of 23 S rRNA. Previous studies have suggested that the G2252-C74 base-pair is important for peptide bond formation. Using a pure population of mutant ribosomes, we analyzed the precise role of this base-pair in peptide bond formation, elongation factor G-dependent translocation, and peptide release by release factor 1. Surprisingly, our results show that the G2252-C74 base-pair is not essential for peptide bond formation with intact aminoacyl tRNAs as substrates and for EF-G catalyzed translocation. Interestingly, however, peptide release was reduced substantially when base-pair formation between G2252 and C74 of P site tRNA was disrupted, indicating that this conserved base-pair plays an important role in ester bond hydrolysis during translation termination.  相似文献   

8.
The backbone modification amide-3, in which -CH2-NH-CO-CH2- replaces -C5'H2-O5'-PO2-O3'-, is studied in the duplex d(G1-C2-G3-T4.T5-G6-C7-G8)*mr(C9-G10-C11-A12-A13-C14-G15+ ++-C16) where . indicates the backbone modification and mr indicates the 2'-OMe RNA strand. The majority of the exchangeable and non-exchangeable resonances have been assigned. The assignment procedure differs from standard methods. The methyl substituent of the 2'-OMe position of the RNA strand can be used as a tool in the interpretation. The duplex structure is a right-handed double helix. The sugar conformations of the 2'-OMe RNA strand are predominantly N-type and the 2'-OMe is positioned at the surface of the minor groove. In the complementary strand, only the sugar of residue T4 is found exclusively in N-type conformation. The incorporation of the amide modification does not effect very strongly the duplex structure. All bases are involved in Watson-Crick base pairs.  相似文献   

9.
One of the most prevalent base modifications involved in decoding is uridine 5-oxyacetic acid at the wobble position of tRNA. It has been known for several decades that this modification enables a single tRNA to decode all four codons in a degenerate codon box. We have determined structures of an anticodon stem-loop of tRNA(Val) containing the modified uridine with all four valine codons in the decoding site of the 30S ribosomal subunit. An intramolecular hydrogen bond involving the modification helps to prestructure the anticodon loop. We found unusual base pairs with the three noncomplementary codon bases, including a G.U base pair in standard Watson-Crick geometry, which presumably involves an enol form for the uridine. These structures suggest how a modification in the uridine at the wobble position can expand the decoding capability of a tRNA.  相似文献   

10.
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
MnmE is a GTP-binding protein conserved between bacteria and eukarya. It is a dimeric three-domain protein where the two G domains have to approach each other for activation of the potassium-stimulated GTPase reaction. Together with GidA, in a heterotetrameric α2β2 complex, it is involved in the modification of the wobble uridine base U34 of the first anticodon position of particular tRNAs. Here we show, using various spin-labeled MnmE mutants and EPR spectroscopy, that GidA binding induces large conformational and dynamic changes in MnmE. It stimulates the GTPase reaction by stabilizing the GTP-bound conformation in a potassium-independent manner. Surprisingly, GidA binding influences not only the GTP- but also the GDP-bound conformation. Thus GidA is a new type of regulator for a G protein activated by dimerization.  相似文献   

14.
NMR studies of a DNA containing 8-hydroxydeoxyguanosine.   总被引:13,自引:6,他引:7       下载免费PDF全文
The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site.  相似文献   

15.
The occurrence of the noncomplementary G-U base pair at the end of a helix is found to be governed by stacking interactions. As a rule, a G-U pair with G on the 5'-side of a Watson-Crick base pair exhibits strikingly greater stacking overlap with the Watson-Crick base pair than a G-U pair on the 3'-side of a Watson-Crick base pair. The former arrangement is expected to be more stable and indeed is observed 29 times out of 32 in the known transfer RNA molecules. In accordance with this rule, the major wobble base pairs G-U or I-U in codon-anticodon interactions have G or I on the 5'-side of the anticodon. Similarly, in initiator tRNAs, this rule is obeyed where now the G is the first letter of the codon (5'-side). In the situation where U is in the wobble position of the anticodon, it is usually substituted at C(5) andmay also have a 2-thio group and it can read one to four codons depending on its modifications. A G at the wobble position of the anticodon can recognize the two codons ending with U or C and modification of G (unless it is I) does not change its reading properties.  相似文献   

16.
17.
We present a systematic investigation of the thermodynamic and kinetic role of the intermolecular G292-C(75 )and G293-C(74 )Watson-Crick base-pairs in the reaction catalyzed by Escherichia coli RNase P RNA. Single turnover kinetics were analyzed for wild-type RNase P RNA and two variants with a single G to C exchange (C292 or C293), either acting on wild-type precursor tRNA (ptRNA) or derivatives carrying a complementary change at the tRNA 3'-end (G(74)CA or CG(75)A). Ground state binding of tRNA was studied using three different methods, including a novel fluorescence-based assay measuring equilibrium binding. We conclude that: (1) the role of the G293-C(74 )interaction is essentially confined to Watson-Crick base-pairing, with no indication for crucial tertiary contacts involving this base-pair; (2) the G293-C(74 )pair, although being as important for ptRNA ground state binding as G292-C(75), is much less crucial to catalytic performance than the G292-C(75) pair; (3) disruption of the G292-C(75 )base-pair results in preferential destabilization of enzyme transition-state complexes; and (4) the identity of the G292-C(75) pair, as part of the higher-order structural context consisting of coplanar G292-C(75)-A258 and G291-G259-A(76 )triples, contributes to high affinity binding of ptRNA and catalytic efficiency.  相似文献   

18.
Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.  相似文献   

19.
The anticodon-independent aminoacylation of RNA hairpin helices that reconstruct tRNA acceptor stems has been demonstrated for at least 10 aminoacyl-tRNA synthetases. For Escherichia coli cysteine tRNA synthetase, the specificity of aminoacylation of the acceptor stem is determined by the U73 nucleotide adjacent to the amino acid attachment site. Because U73 is present in all known cysteine tRNAs, we investigated the ability of the E. coli cystein enzyme to aminoacylate a heterologous acceptor stem. We show here that a minihelixCys based on the acceptor-T psi C stem of yeast tRNACys is a substrate for the E. coli enzyme, and that aminoacylation of this minihelix is dependent on U73. Additionally, we identify two base pairs in the acceptor stem that quantitatively convert the E. coli acceptor stem to the yeast acceptor stem. The influence of U73 and these two base pairs is completely retained in the full-length tRNA. This suggests a conserved relationship between the acceptor stem alone and the acceptor stem in the context of a tRNA for aminoacylation with cysteine. However, the primary determinant in the species-specific aminoacylation of the E. coli and yeast cysteine tRNAs is a tertiary base pair at position 15:48 outside of the acceptor stem. Although E. coli tRNACys has an unusual G15:G48 tertiary base pair, yeast tRNACys has a more common G15:C48 that prevents efficient aminoacylation of yeast tRNACys by the E. coli enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The structure of the genetic code implies strict Watson–Crick base pairing in the first two codon positions, while the third position is known to be degenerate, thus allowing wobble base pairing. Recent crystal structures of near-cognate tRNAs accommodated into the ribosomal A-site, however, show canonical geometry even with first and second position mismatches. This immediately raises the question of whether these structures correspond to tautomerization of the base pairs. Further, if unusual tautomers are indeed trapped why do they not cause errors in decoding? Here, we use molecular dynamics free energy calculations of ribosomal complexes with cognate and near-cognate tRNAs to analyze the structures and energetics of G-U mismatches in the first two codon positions. We find that the enol tautomer of G is almost isoenergetic with the corresponding ketone in the first position, while it is actually more stable in the second position. Tautomerization of U, on the other hand is highly penalized. The presence of the unusual enol form of G thus explains the crystallographic observations. However, the calculations also show that this tautomer does not cause high codon reading error frequencies, as the resulting tRNA binding free energies are significantly higher than for the cognate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号