首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.  相似文献   

2.
Endurance exercise training (Ex) has been shown to increase maximal skeletal muscle blood flow. The purpose of this study was to test the hypothesis that increased endothelium-dependent vasodilation is associated with the Ex-induced increase in muscle blood flow. Furthermore, we hypothesized that enhanced endothelium-dependent dilation is confined to vessels in high-oxidative muscles that are recruited during Ex. To test these hypotheses, sedentary (Sed) and rats that underwent Ex (30 m/min x 10% grade, 60 min/day, 5 days/wk, 8-12 wk) were studied using three experimental approaches. Training effectiveness was evidenced by increased citrate synthase activity in soleus and vastus lateralis (red section) muscles (P < 0.05). Vasodilatory responses to the endothelium-dependent agent acetylcholine (ACh) in situ tended to be augmented by training in the red section of gastrocnemius muscle (RG; Sed: control, 0.69 +/- 0.12; ACh, 1.25 +/- 0.15; Ex: control, 0.86 +/- 0.17; ACh, 1.76 +/- 0.27 ml x min(-1) x 100 g(-1) x mmHg(-1); 0.05 < P < 0.10 for Ex vs. Sed during ACh). Responses to ACh in situ did not differ between Sed and Ex for either the soleus muscle or white section of gastrocnemius muscle (WG). Dilatory responses of second-order arterioles from the RG in vitro to flow (4-8 microl/min) and sodium nitroprusside (SNP; 10(-7) through 10(-4) M), but not ACh, were augmented in Ex (vs. Sed; P < 0.05). Dilatory responses to ACh, flow, and SNP of arterioles from soleus and WG muscles did not differ between Sed and Ex. Content of the endothelial isoform of nitric oxide synthase (eNOS) was increased in second-order, fourth-order, and fifth-order arterioles from the RG of Ex; eNOS content was similar between Sed and Ex in vessels from the soleus and WG muscles. These findings indicate that Ex induces endothelial adaptations in fast-twitch, oxidative, glycolytic skeletal muscle. These adaptations may contribute to enhanced skeletal muscle blood flow in endurance-trained individuals.  相似文献   

3.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

4.
An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague–Dawley rats (21–28 days old, 70–90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles.  相似文献   

5.
These experiments examined the independent effects of short-term exercise and heat stress on myocardial responses during in vivo ischemia-reperfusion (I/R). Female Sprague-Dawley rats (4 mo old) were randomly assigned to one of four experimental groups: 1) control, 2) 3 consecutive days of treadmill exercise [60 min/day at 60-70% maximal O2 uptake (VO2 max)], 3) 5 consecutive days of treadmill exercise (60 min/day at 60-70% VO2 max), and 4) whole body heat stress (15 min at 42 degrees C). Twenty-four hours after heat stress or exercise, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was maintained for 30-min followed by a 30-min period of reperfusion. Compared with control, both heat-stressed animals and exercised animals (3 and 5 days) maintained higher (P < 0.05) left ventricular developed pressure (LVDP), maximum rate of left ventricular pressure development (+dP/dt), and maximum rate of left ventricular pressure decline (-dP/dt) at all measurement periods during both ischemia and reperfusion. No differences existed between heat-stressed and exercise groups in LVDP, +dP/dt, and -dP/dt at any time during ischemia or reperfusion. Both heat stress and exercise resulted in an increase (P < 0.05) in the relative levels of left ventricular heat shock protein 72 (HSP72). Furthermore, exercise (3 and 5 days) increased (P < 0.05) myocardial glutathione levels and manganese superoxide dismutase activity. These data indicate that 3-5 consecutive days of exercise improves myocardial contractile performance during in vivo I/R and that this exercise-induced myocardial protection is associated with an increase in both myocardial HSP72 and cardiac antioxidant defenses.  相似文献   

6.
Diabetes induces changes in the structural, biochemical, electrical, and contractile properties of skeletal muscles. Neuropeptide Y (NPY) administered locally can induce angiogenesis in a rat ischemic limb model and restore the contractile function of the ischemic muscle. The effects of NPY on the contractile characteristics of limb skeletal muscles were examined in streptozotocin-induced diabetic rats. Rats were treated with sham pellets (control groups) or NPY-containing pellets (1 mg of NPY/pellet, 14 days releasing time) administered locally to the rat hind limb 2 months after induction of diabetes. Contractile properties and fatigability of the slow-twitch soleus and fast-twitch gastrocnemius medials muscle were compared in control (sham), control NPY, diabetic (sham), and diabetic NPY groups. In order to induce fatigue trains of repetitive tetanic stimulation were used (600 ms/1 s simulation-rest cycle per train, 112 trains at an 85-Hz fusion frequency). Two months of untreated diabetes significantly prolonged soleus contraction and slowed its relaxation, but had minimal effects on soleus tension. NPY ameliorated the diabetic effects on soleus speed-related contractile properties, restoring its contraction and relaxation times. Diabetes significantly reduced gastrocnemius medials tetanic tension, leaving its contractile characteristics mostly unaffected. NPY partially restored gastrocnemius tetanic tension production capacity. Diabetes significantly increased fatigability of both muscles, which was partially restored by NPY, as evidenced by restored endurance of soleus muscle. The results suggest that NPY administered locally tends to normalize muscle performance and improve fatigue resistance of skeletal muscles in streptozotocin diabetes. Further examination is needed to establish the mechanisms of local NPY action on muscle contractile properties in streptozotocin-induced diabetes.  相似文献   

7.
Effects of alkalosis on muscle ions at rest and with intense exercise   总被引:3,自引:0,他引:3  
The effects of metabolic and respiratory alkalosis (MALK and RALK) on intracellular strong ion concentrations ([ion]i) and muscle to blood ion fluxes were examined at rest and during 5 min of intense, intermittent tetanic stimulation in the isolated, perfused rat hindlimb. Compared with the control (C), perfusion of resting skeletal muscle during MALK and RALK significantly increased [Cl-]i and [Na+]i, and RALK significantly lowered [K+]i; these changes, however, did not affect initial hindlimb force production. In both resting and stimulated muscle, the intracellular ion changes corresponded to appropriate perfusate to muscle ion fluxes. At rest, changes in slow-twitch soleus were greater than in fast-twitch white gastrocnemius (WG), but stimulation-induced changes in [Lac]i and [K+]i were greater in WG. At the end of stimulation [K+]i and [Mg2+]i had decreased less in MALK than in C and RALK, particularly in plantaris and WG muscles. Compared with C, the muscle to perfusate flux of Lac- increased by 37% in MALK and 27% in RALK. This was associated with significantly less Lac- accumulation in all muscles in MALK than in RALK, which, in turn, had significantly less lactate than C. Lactate efflux from contracting skeletal muscle was significantly correlated with an uptake of Cl- by muscle. It is concluded that extracellular alkalosis alters skeletal muscle intracellular ionic composition and increases Lac- efflux from skeletal muscle. In agreement with other studies, lactate release appears to occur by both ionic and molecular transport processes. Alkalosis had no apparent effect on muscle performance with this preparation.  相似文献   

8.
The present study aimed to investigate the differential response of oxidative (soleus) and glycolytic (gastrocnemius) muscles to heat-induced endoplasmic reticulum (ER) stress. It was hypothesized that due to compositional and functional differences, both muscles respond differently to acute heat stress. To address this, male Sprague Dawley rats (12/group) were subjected to thermoneutral (25 °C) or heat stress (42 °C) conditions for 1 h. Soleus and gastrocnemius muscles were removed for analysis post-exposure. A significant increase in body temperature and free radical generation was observed in both the muscles following heat exposure. This further caused a significant increase in protein carbonyl content, AOPP, and lipid peroxidation in heat-stressed muscles. These changes were more pronounced in heat-stressed soleus compared to the gastrocnemius muscle. Accumulation of unfolded, denatured proteins results in ER stress, causing activation of unfolded protein response (UPR) pathway. The expressions of UPR transducers were significantly higher in soleus as compared to the gastrocnemius muscle. A significant elevation in resting intracellular calcium ion was also observed in heat-stressed soleus muscle. Overloading of cells with misfolded proteins in soleus muscle activated ER-induced apoptosis as indicated by significant upregulation of C/EBP homologous protein and Caspase12. The study provides a detailed mechanistic representation of the differential response of muscles toward UPR under heat stress. Data suggests that soleus majorly being an oxidative muscle is more prone to heat stress-induced insult indicated by enhanced apoptosis. This study may aid in devising mitigation strategies to improve muscle performance under heat stress.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01178-x.  相似文献   

9.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

10.
Fiber type specificity of pyruvate dehydrogenase (PDH) phosphatase (PDP) was determined in fed (CON) and 48-h food-deprived (FD) rats. PDP activity and isoform protein content were determined in soleus (slow-twitch oxidative), red gastrocnemius (RG; fast-twitch oxidative glycolytic), and white gastrocnemius (WG; fast-twitch glycolytic) muscles. When normalized for mitochondrial volume, there was no difference in PDP activity between muscle types or CON and FD. When expressed per gram wet tissue weight, PDP activity was higher in RG compared with soleus and WG in both CON and FD rats. PDP activities from CON muscles were 1.48 +/- 0.19, 2.68 +/- 0.65, and 1.20 +/- 0.33 nmol x min(-1) x g wet tissue wt(-1) in soleus, RG, and WG, respectively, and decreased in FD muscles (1.22 +/- 0.22, 2.00 +/- 0.57, and 0.84 +/- 0.18 nmol x min(-1) x g wet tissue wt(-1)). This correlated with increased PDP2 protein, however, only in RG, as PDP2 was not detectable in soleus or WG. PDP1 protein was not responsive to food deprivation in all fiber types. In conclusion, PDP activity and protein content were higher in fast-twitch oxidative glycolytic muscles from CON and FD rats, identifying a unique inter- and intramuscular distribution. FD induced a small but significant decrease in PDP activity that was partially due to decreases in PDP2 protein. As a result, coordinate changes to PDP activity opposite to those of the other regulatory enzyme, PDH kinase, during food deprivation would maximize the inactivation of skeletal muscle PDH and enhance carbohydrate conservation during periods of limited carbohydrate supply.  相似文献   

11.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

12.
N-oleoyldopamine (OLDA), a bioactive lipid originally found in the mammalian brain, is an endovanilloid that selectively activates the transient receptor potential vanilloid type 1 (TRPV1) channel. This study tests the hypothesis that OLDA protects the heart against ischemia and reperfusion (I/R) injury via activation of the TRPV1 in wild-type (WT) but not in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. Hearts of WT or TRPV1(-/-) mice were Langendorffly perfused with OLDA (2 x 10(-9) M) in the presence or absence of CGRP8-37 (1 x 10(-6) M), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; RP-67580 (1 x 10(-6) M), a selective neurokinin-1 receptor antagonist; chelerythrine (5 x 10(-6) M), a selective protein kinase C (PKC) antagonist; or tetrabutylammonium (TBA, 5 x 10(-4) M), a nonselective K(+) channel antagonist, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), coronary flow (CF), and left ventricular peak positive dP/dt (+dP/dt) were evaluated after I/R. OLDA improved recovery of cardiac function after I/R in WT but not TRPV1(-/-) hearts by increasing LVDP, CF, and +dP/dt and by decreasing LVEDP. CGRP8-37, RP-67580, chelerythrine, or TBA abolished the protective effect of OLDA in WT hearts. Radioimmunoassay showed that the release of substance P (SP) and CGRP after OLDA treatment was higher in WT than in TRPV1(-/-) hearts, which was blocked by chelerythrine or TBA. Thus OLDA exerts a cardiac protective effect during I/R injury in WT hearts via CGRP and SP release, which is abolished by PKC or K(+) channel antagonists. The protective effect of OLDA is void in TRPV1(-/-) hearts, supporting the notion that TRPV1 mediates OLDA-induced protection against cardiac I/R injury.  相似文献   

13.
The effect of age on skeletal muscle anaerobic energy metabolism was investigated in adult (11 mo) and aged (25 mo) Fischer 344 rats. Hindlimb skeletal muscles innervated by the sciatic nerve were stimulated to contract with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1 Hz for 60 s, with an occluded circulation. Soleus, plantaris, and red and white gastrocnemius (WG) were sampled from control and stimulated limbs. All muscle masses were reduced with age (9-13%). Peak isometric tensions, normalized per gram of wet muscle, were lower throughout the stimulation in the aged animals (28%). The potential for anaerobic ATP provision was unaltered with age in all muscles, because resting high-energy phosphates and glycogen contents were similar to adult values. Anaerobic ATP provision during stimulation was unaltered by aging in soleus, plantaris, and red gastrocnemius muscles. In the WG, containing mainly fast glycolytic (FG) fibers, ATP and phosphocreatine contents were depleted less in aged muscle. In situ glycogenolysis and glycolysis were 90.0 +/- 4.8 and 69.3 +/- 2.6 mumol/g dry muscle (dm) in adult WG and reduced to 62.3 +/- 6.9 and 51.5 +/- 5.5 mumol/g dm, respectively, in aged WG. Consequently, total anaerobic ATP provision was lower in aged WG (224.5 +/- 20.9 mumol/g dm) vs. adult (292.6 +/- 7.6 mumol/g dm) WG muscle. In summary, the decreased tetanic tension production in aged animals was associated with a decreased anaerobic energy production in FG fibers. Reduced high-energy phosphate use and a greater energy charge potential after stimulation suggested that the energy demand was reduced in aged FG fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.  相似文献   

15.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

16.
The hypothesis that during intense muscle contraction induced by electrical stimulation, long chain fatty acids (LCFA) might reduce mitochondrial ATP/ADP ratio, raising the contribution of glycolysis for ATP production was examined. The effect of a lipid infusion (Lipovenus emulsion) on UCP-3 mRNA level, lactate, glucose-6-phosphate (G-6P) and glycogen content was investigated in rat. Blood samples for determination of free fatty acids and lactate were collected at 0, 30 and 60 min during rest and at 0, 10 and 20 min during muscle contraction. The content of lactate, glycogen and G-6P was also determined in soleus (SO), red gastrocnemius (RG) and white gastrocnemius (WG) muscles collected immediately after muscle contraction period. In addition, the force level was determined during muscle contractions. The effect of Lipovenus emulsion on respiration of mitochondria isolated from rat skeletal muscle, and content of UCP-3 and lactate in cultured skeletal muscle cells was also determined. The in vivo experiments showed that Lipovenus induced a significant increase of UCP-3 mRNA levels. After Lipovenus infusion, lactate level was increased in RG muscle only, whereas the contents of glycogen and G-6P were decreased in both RG and WG muscles (P < 0.05). Lipovenus infusion failed to exert any effect on muscle force performance (P > 0.05). The in vitro experiments showed that Lipovenus infusion induced a significant increase in mitochondrial respiration, but had no effect on UCP-3 content. Lactate concentration was significantly increased in the culture medium of stimulated cells in the control and Lipovenus groups compared with the respective not-stimulated cells (P< 0.05). We concluded that as mitochondrial function becomes limited by the FFA-uncoupling effect, the ATP demand is mainly supplied by anaerobic glucose metabolism preventing an expected decrease in muscle contraction performance.  相似文献   

17.
We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.  相似文献   

18.
19.
We examined whether the protein level and/or activity of glycogenin, the protein core upon which glycogen is synthesized, is limiting for maximal attainable glycogen levels in rat skeletal muscle. Glycogenin activity was 27.5 +/- 1.4, 34.7 +/- 1.7, and 39.7 +/- 1.3 mU/mg protein in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. A similar fiber type dependency of glycogenin protein levels was seen. Neither glycogenin protein level nor the activity of glycogenin correlated with previously determined maximal attainable glycogen levels, which were 69.3 +/- 5.8, 137.4 +/- 10.1, and 80.0 +/- 5.4 micromol/g wet wt in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. In additional experiments, rats were exercise trained by swimming, which resulted in a significant increase in the maximal attainable glycogen levels in soleus muscles ( approximately 25%). This increase in maximal glycogen levels was not accompanied by an increase in glycogenin protein level or activity. Furthermore, even in the presence of very high glycogen levels ( approximately 170 micromol/g wet wt), approximately 30% of the total glycogen pool continued to be present as unsaturated glycogen molecules (proglycogen). Therefore, it is concluded that glycogenin plays no limiting role for maximal attainable glycogen levels in rat skeletal muscle.  相似文献   

20.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号