首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
产酸克雷伯氏杆菌发酵产2,3-丁二醇的培养基优化   总被引:1,自引:0,他引:1  
采用不同设计方法相结合的策略对耐高糖产酸克雷伯氏杆菌(Klebsiella oxytoca)ME—UD-3-4发酵产2,3-丁二醇的培养基进行优化。首先在单因素实验的基础上采用Plackett—Burrnan设计法对影响ME—UD-3-4发酵产2,3-丁二醇的相关因素进行研究,筛选到3种有显著效应的因素(P〈0.05):葡萄糖、玉米浆和MgSO4·7H2O。然后利用响应曲面法(Response Surface Methodology,RSM)对这3种因素的最佳水平范围进一步探讨;对得到的回归模型进行分析,得最佳条件(g/L):葡萄糖220、玉米浆19和MgSO4·7H2O 0.4;在最佳条件下,发酵80h,2,3-丁二醇产量从原来的57.3 g/L提高到86.1 g/L,生产强度由0.72g/(L·h)提高到1.08g/(L·h)。  相似文献   

2.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

3.
Summary High glucose concentrations result in high levels of 2,3-butanediol, improved yield and productivity, and a decrease in cell growth in batch cultures of Klebsiella oxytoca. A maximum of 84.2 g butanediol/l and a yield of 0.5 was obtained with an initial glucose concentration of 262.6g/l. Adding the substrate in two steps in a modified fed-batch operation resulted in 85.5 g butanediol/l, 6.4 g acetoin/l and 3.4 g ethanol/l with a net yield of 0.5. Increasing the cell density to 60g/l resulted in productivities as high as 3.22 g/l.h.  相似文献   

4.
Summary The effect of succinic acid on the growth of Klebsiella oxytoca and its production of 2,3-butanediol was studied. Increasing succinic acid from 0 g/L to 30 g/L increased the final butanediol concentration. The maximum butanediol productivity occurred at an initial succinic acid concentration of approximately 10 g/L.  相似文献   

5.
In silico genome-scale cell models are promising tools for accelerating the design of cells with improved and desired properties. We demonstrated this by using a genome-scale reconstructed metabolic network of Saccharomyces cerevisiae to score a number of strategies for metabolic engineering of the redox metabolism that will lead to decreased glycerol and increased ethanol yields on glucose under anaerobic conditions. The best-scored strategies were predicted to completely eliminate formation of glycerol and increase ethanol yield with 10%. We successfully pursued one of the best strategies by expressing a non-phosphorylating, NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in S. cerevisiae. The resulting strain had a 40% lower glycerol yield on glucose while the ethanol yield increased with 3% without affecting the maximum specific growth rate. Similarly, expression of GAPN in a strain harbouring xylose reductase and xylitol dehydrogenase led to an improvement in ethanol yield by up to 25% on xylose/glucose mixtures.  相似文献   

6.
Higher cell concentrations and greater 2,3-butanediol production were observed in aerobic cultures of Klebsiella oxytoca than with anaerobic cultures. The concentration of butanediol inhibitors such as ethanol and lactic acid are partially suppressed by adequate aeration-agitation. Excessive aeration-agitation leads to the formation of acetoin and acetic acid at the expense of butanediol. With 94.3 g/l of glucose in the media, aerobic batch cultures produced 38.1 g/l butanediol with complete substrate use and a productivity of 0.39 g/l/h.  相似文献   

7.
With the aid of a membrane introduction mass spectrometer (MIMS), the major product 2,3-butanediol (2,3-BDL) as well as the other metabolites from the fermentation carried by Klebsiella oxytoca can be measured on-line simultaneously. A backpropagation neural network (BPN) being recognized with superior mapping ability was applied to this control study. This neural network adaptive control differs from those conventional controls for fermentation systems in which the measurements of cell mass and glucose are not included in the network model. It is only the measured product concentrations from the MIMS that are involved. Oxygen composition was chosen to be the control variable for this fermentation system. Oxygen composition was directly correlated to the measured product concentrations in the controller model. A two-dimensional (number of input nodes by number of data sets) moving window for on-line, dynamic learning of this fermentation system was applied. The input nodes of the network were also properly selected. Number of the training data sets for obtaining better control results was also determined empirically. Two control structures for this 2,3-BDL fermentation are discussed and compared in this work. The effect from adding time delay element to the network controller was also investigated.  相似文献   

8.
Production of 2,3-butanediol by Klebsiella oxytoca is influenced by the degree of oxygen limitation. During batch culture studies, two phases of growth are observed: energy-coupled growth, during which cell growth and oxygen supply are coupled; and, energy-uncoupled growth, which arises when the degree of oxygen limitation reaches a critical value. Optimal 2,3-butanediol productivity occurs during the energy-coupled growth phase. In this article, a control system which maintains the batch culture at a constant level of oxygen limitation in the energy-coupled growth regime has been designed. Control, which involves feedback control on the oxygen transfer coefficient, is achieved by continually increasing the partial pressure of oxygen in the feed gas, which in turn continually increases the oxygen transfer rate. Control has resulted in a balanced state of growth, a repression of ethanol formation, and an increase in 2,3-butanediol productivity of 18%. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
A backpropagation neural network (BPN) was applied for the control study of 2,3-butanediol fermentation (2,3-BDL) carried by Klebsiella oxytoca. The measurements of cell mass and glucose were not included in the network models, instead, only the on-line measured product concentrations from the MIMS (membrane introduction mass spectrometer) were involved. Oxygen composition was chosen to be the control variable for this fermentation system for the formation of 2,3-BDL is regulated by oxygen. Oxygen composition was directly correlated to the measured product concentrations. A two-dimensional (number of input nodes by number of data sets) moving window to supply data for on-line, dynamic learning of this fermentation system was applied. The input nodes of the networks were also properly selected. Two neural network control schemes for this 2,3-BDL fermentation were discussed and compared in this work. Fermentations often exist time delay due to the measurement and their slow reaction nature. Hence, the order of time delay for the network controller was also investigated.  相似文献   

10.
Microbial preference for glucose implies incomplete and/or slow utilization of lignocellulose hydrolysates, which is caused by the regulatory mechanism named carbon catabolite repression (CCR). In this study, a 2,3-butanediol (2,3-BD) producing Klebsiella oxytoca strain was engineered to eliminate glucose repression of xylose utilization. The crp(in) gene, encoding the mutant cyclic adenosine monophosphate (cAMP) receptor protein CRP(in), which does not require cAMP for functioning, was characterized and overexpressed in K. oxytoca. The engineered recombinant could utilize a mixture of glucose and xylose simultaneously, without CCR. The profiles of sugar consumption and 2,3-BD production by the engineered recombinant, in glucose and xylose mixtures, were examined and showed that glucose and xylose could be consumed simultaneously to produce 2,3-BD. This study offers a metabolic engineering strategy to achieve highly efficient utilization of sugar mixtures derived from the lignocellulosic biomass for the production of bio-based chemicals using enteric bacteria.  相似文献   

11.
Klebsiella is one of the genera that has shown unbeatable production performance of 2,3-butanediol (2,3-BD), when compared to other microorganisms. In this study, two Klebsiella strains, K. pneumoniae (DSM 2026) and K. oxytoca (ATCC 43863), were selected and evaluated for 2,3-BD production by batch and fed-batch fermentations using glucose as a carbon source. Those strains' morphologies, particularly their capsular structures, were analyzed by scanning electron microscopy (SEM). The maximum titers of 2,3-BD by K. pneumoniae and K. oxytoca during 10 h batch fermentation were 17.6 and 10.9 g L(-1), respectively; in fed-batch cultivation, the strains showed the maximum titers of 50.9 and 34.1 g L(-1), respectively. Although K. pneumoniae showed higher productivity, SEM showed that it secreted large amounts of capsular polysaccharide, increasing pathogenicity and hindering the separation of cells from the fermentation broth during downstream processing.  相似文献   

12.
Shin SH  Kim S  Kim JY  Lee S  Um Y  Oh MK  Kim YR  Lee J  Yang KS 《Journal of bacteriology》2012,194(9):2371-2372
Here we report the full genome sequence of Klebsiella oxytoca KCTC 1686, which is used in production of 2,3-butanediol. The KCTC 1686 strain contains 5,974,109 bp with G+C content of 56.05 mol% and contains 5,488 protein-coding genes and 110 structural RNAs.  相似文献   

13.
Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724   总被引:1,自引:0,他引:1  
It is known that 2,3-butanediol is a potentially valuable chemical feedstock that can be produced from the sugars present in hemicellulose and celluose hydrolysates. Klebsiella oxytoca is able to ferment most pentoses, hexoses, and disaccharides. Butanediol appears to be a primary metabolite, excreted as a product of energy methabolism. The theoretical maximum yield of butanediol from monosaccharides is 0.50 g/g. This article describes the effects of pH, xylose concentration, and the oxygen transfer rate on the bioconversion of D-xylose to 2,3-butanediol. Product inhibition by butanediol is also examined. The most important variable affecting the kinetics of this system appears to be the oxygen transfer rate. A higher oxygen supply favors the formation of cell mass at the expense of butanediol. Decreasing the oxygen supply rate increases the butanediol yield, but decreases the overall conversion rate due to a lower cell concentration.  相似文献   

14.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

15.
16.
为了解产酸克雷伯氏菌对木质纤维素水解液中主要抑制物的耐受和代谢,考察了产酸克雷伯氏菌发酵生产2,3-丁二醇(2,3-butanediol,2,3-BDO)过程中对3种发酵抑制物乙酸、糠醛和5-羟甲基糠醛(5-hydroxymethylfurfural HMF)的耐受以及抑制物浓度的变化,检测了糠醛和HMF的代谢产物.结果表明:产酸克雷伯氏菌对乙酸、糠醛和HMF的耐受浓度分别为30 g/L、4 g/L和5 g/L.并且部分乙酸可作为生产2,3-丁二醇的底物,在0~30 g/L浓度范围内可提高2,3-丁二醇的产量.发酵过程中产酸克雷伯氏菌可将HMF和糠醛全部转化,其中约70%HMF被转化为2,5-呋喃二甲醇,30%HMF和全部糠醛被菌体代谢.研究表明在木质纤维素水解液生产2,3-丁二醇的脱毒过程中可优先考虑脱除糠醛,一定浓度的乙酸可以不用脱除.  相似文献   

17.
Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions.  相似文献   

18.
19.
The production of biofuels by recombinant Escherichia coli is restricted by the toxicity of the products. 2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical with low toxicity to microbes, could be a promising alternative for biofuel production. However, the yield and productivity of 2,3-BD produced by recombinant E. coli strains are not sufficient for industrial scale fermentation. In this work, the production of 2,3-BD by recombinant E. coli strains was optimized by applying a systematic approach. 2,3-BD biosynthesis gene clusters were cloned from several native 2,3-BD producers, including Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumoniae, Serratia marcescens, and Enterobacter cloacae, inserted into the expression vector pET28a, and compared for 2,3-BD synthesis. The recombinant strain E. coli BL21/pETPT7-EcABC, carrying the 2,3-BD pathway gene cluster from Enterobacter cloacae, showed the best ability to synthesize 2,3-BD. Thereafter, expression of the most efficient gene cluster was optimized by using different promoters, including PT7, Ptac, Pc, and Pabc. E. coli BL21/pET-RABC with Pabc as promoter was superior in 2,3-BD synthesis. On the basis of the results of biomass and extracellular metabolite profiling analyses, fermentation conditions, including pH, agitation speed, and aeration rate, were optimized for the efficient production of 2,3-BD. After fed-batch fermentation under the optimized conditions, 73.8 g/L of 2,3-BD was produced by using E. coli BL21/pET-RABC within 62 h. The values of both yield and productivity of 2,3-BD obtained with the optimized biological system are the highest ever achieved with an engineered E. coli strain. In addition to the 2,3-BD production, the systematic approach might also be used in the production of other important chemicals through recombinant E. coli strains.  相似文献   

20.
对5株克雷伯氏肺炎杆菌 (包括两株乳酸途径被敲除的工程菌株) 发酵生产2,3-丁二醇能力进行了比较,其中K. pneumonia HR521 LDH (乳酸合成途径中ldhA基因被敲除) 具有最佳的发酵性能。通过正交试验优化了其发酵培养基的主要组分,优化后的培养基组成为:葡萄糖 90 g/L,(NH4)2HPO4 3 g/L,玉米浆 (CLSP) 6 g/L,乙酸钠 5 g/L,KCl 0.4 g/L,MgSO4 0.1 g/L,FeSO4·7H2O 0.02 g/L,MnSO4 0.01 g/L。在优化后的发酵培养基中进行摇瓶发酵,24 h发酵乙偶姻和2,3-丁二醇的终浓度为37.46 g/L,比未优化前增加了10 g/L,2,3-丁二醇得率达到了理论得率的90.53%,生产强度1.56 g/(L·h),检测不到副产物乳酸的生成,利于后提取工艺的进行和工业生产的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号