首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

3.
I have investigated the reproductive biology of four dioecious species of Lindera in Japan: Lindera obtusiloba Bl., L. umbellata Thunb., L. erythrocarpa Makino, and L. glauca Bl. The sex ratios in populations of the first three species are close to equality, but in L. glauca only female individuals are found in Japan, although males are known from continental Asia. The persistence of this dioecious species in the absence of males is surprising, and prompts the question: What mechanisms operate to ameliorate problems of colonization in species of Lindera? I carried out bagging experiments in order to test for apomixis (asexual reproduction by seeds) and to establish the importance of pollination and fertilization, and potential pollen vectors. Only L. glauca reproduced by apomixis. Level of fruit set was high, and was not affected by pollination. In the other three species, seed set was entirely dependent on pollen transfer, which could be accomplished by small Coleoptera and Diptera. The evolution of apomixis in L. glauca appears to have been a strategy to overcome sterility and establish a population in the Japanese islands even in the absence of males. However, this change in breeding system has not occurred in congeneric, co-occurring species, which do not seem to have experienced a lack of male plants.  相似文献   

4.
Population estimates, often difficult to acquire, warrantee the use of an index as an economical substitute for rapid assessments of populations. We estimated population size of the little known social, semi-fossorial Indian desert jird (Meriones hurrianae) in Kachchh, Gujarat, India under closed population capture-mark-recapture (CMR) framework to calibrate a burrow count index for the species. A total of 147 individuals were trapped in 16 colonies using baited Sherman traps and the number of burrow entrances at each colony was recorded. Data from colonies with low number of captures were pooled to estimate capture probability using Huggins heterogeneity models with gender, site, body weight and age category as covariates in Program MARK. Colony sizes ranged from 2 to 46 individuals. The number of burrow entrances was calibrated against CMR-based population estimates using least squares regression (n = 16, adjusted R 2 = 0.96, t = 18.18, P < 0.001). The index was further validated using Jackknife (JK) analysis where JK-predicted population estimates strongly correlated with CMR estimates (r = 0.96, P < 0.001). In habitats and climatic conditions similar to Kachchh and within the range of colony sizes sampled, our calibrated index can be a valuable and effective tool for large scale surveys of the desert jird, which occupies a keystone trophic level in the semi-arid ecosystem.  相似文献   

5.
Genetic factors such as decreased genetic diversity and increased homozygosity can have detrimental effects on rare species, and may ultimately limit potential adaptation and exacerbate population declines. The Gulf and Atlantic Coastal Plain physiographic region has the second highest level of endemism in the continental USA, but habitat fragmentation and land use changes have resulted in catastrophic population declines for many species. Astragalus michauxii (Fabaceae) is an herbaceous plant endemic to the region that is considered vulnerable to extinction, with populations generally consisting of fewer than 20 individuals. We developed eight polymorphic microsatellites and genotyped 355 individuals from 24 populations. We characterized the population genetic diversity and structure, tested for evidence of past bottlenecks, and identified evidence of contemporary gene flow between populations. The mean ratios of the number of alleles to the allelic range (M ratio) across loci for A. michauxii populations were well below the threshold of 0.68 identified as indicative of a past genetic bottleneck. Genetic diversity estimates were similar across regions and populations, and comparable to other long-lived perennial species. Within-population genetic variation accounted for 92 % of the total genetic variation found in the species. Finally, there is evidence for contemporary gene flow among the populations in North Carolina. Although genetic factors can threaten rare species, maintaining habitats through prescribed burning, in concert with other interventions such as population augmentation or (re)introduction, are likely most critical to the long term survival of A. michauxii.  相似文献   

6.
Studies of genetic population structure and genetic diversity are often critical components of endangered species conservation and management plans. Genetic studies are thus particularly important for amphibians, which are in global decline. We studied genetic variation and population structure among 276 individuals from approximately half of the known localities of the endangered Sonora tiger salamander, Ambystoma mavortium stebbinsi, using ten microsatellite loci. Allelic diversity was generally low (2.7 alleles per locus per population) and overall observed heterozygosity (0.191) was significantly lower than expected (0.332). Most populations showed significant departures from Hardy–Weinberg equilibrium, which are likely due to inbreeding. In addition, evidence of recent bottlenecks was suggested by shifted allele frequency distributions in 5 of 16 populations, and ratios of allele number to allele size range (M) values lower than critical values in all populations. A high degree of genetic subdivision (θ = 0.133) was found over all populations, and nearly all pairwise population combinations were genetically subdivided. Thus, gene flow is limited even over small distances, perhaps because high desert grassland throughout the study area limits the efficacy of inter-pond movement of salamanders. Further, population sizes and gene flow of Sonora tiger salamanders are likely compromised by several contemporary ecological threats, including: frequent die-offs due to an infectious virus, introductions of non-native species, and continuing cattle grazing. Overall, these genetic data support the endangered status of the Sonora tiger salamander and suggest the subspecies exists in small, inbred populations.  相似文献   

7.
Detailed knowledge of the habitat requirements of species is required because habitat greatly affects the persistence of species. We investigated the effects of tree species and microhabitat heterogeneity on the population of the locally threatened lichen Lobaria pulmonaria. We studied four L. pulmonaria populations in Central Spain and collected microhabitat data for individuals growing on beech and oak. The microhabitat affected the life stages of L. pulmonaria; being a phorophyte species the location of the lichen was the most important factor generating different patterns of establishment, abundance, thallus size and reproductive capacity. Although oak forests favoured the establishment and recruitment of new L. pulmonaria individuals, they apparently provided adverse environmental conditions for lichen growth, thus affecting the reproductive capacity since this is size-dependent. By contrast, beech forests offered a more favourable microclimate, because L. pulmonaria individuals reached larger sizes in these forests. In conclusion, our results indicate that habitats hosting large populations, with high rates of establishment and recruitment do not necessarily favour other life-cycle stages.  相似文献   

8.
The dynamics and microdistribution of faunal assemblages at hydrothermal vents often reflect the fine-scale spatial and temporal heterogeneity of the vent environment. This study examined the reproductive development and population structure of the caridean shrimp Rimicaris hybisae at the Beebe and Von Damm Vent Fields (Mid-Cayman Spreading Centre, Caribbean) using spatially discrete samples collected in January 2012. Rimicaris hybisae is gonochoric and exhibits iteroparous reproduction. Oocyte size-frequency distributions (21-823 µm feret diameters) varied significantly among samples. Embryo development was asynchronous among females, which may result in asynchronous larval release for the populations. Specimens of R. hybisae from the Von Damm Vent Field (2294 m) were significantly larger than specimens from the Beebe Vent Field. Brooding females at Von Damm exhibited greater size-specific fecundity, possibly as a consequence of a non-linear relationship between fecundity and body size that was consistent across both vent fields. Samples collected from several locations at the Beebe Vent Field (4944–4972 m) revealed spatial variability in the sex ratios, population structure, size, and development of oocytes and embryos of this mobile species. Samples from the Von Damm Vent Field and sample J2-613-24 from Beebe Woods exhibited the highest frequencies of ovigerous females and significantly female-biased sex ratios. Environmental variables within shrimp aggregations may influence the distribution of ovigerous females, resulting in a spatially heterogeneous pattern of reproductive development in R. hybisae, as found in other vent taxa.  相似文献   

9.
Population dynamics are typically affected by a combination of density-independent and density-dependent factors, the latter of which have been conceptually and theoretically linked with how variable population sizes are over time—which in turn has been tied to how prone populations are to extinction. To address evidence for the occurrence of density dependence and its relationship with population size variability (pv), we quantified each of these for 126 populations of 8 species of Salmoniformes. Using random-effects models, we partitioned variation in the strength of density dependence and the magnitude of pv between and within species and estimated the correlation of density dependence and population size variability at both the between- and within-species levels. We found that variation in the strength of density dependence was predominately within species (I 2 = 0.47). In contrast, variation in population size variability was distributed both between and within species (I 2 = 0.40). Contrary to theoretical and conceptual expectations, the strength of density dependence and the magnitude of population size variability were positively correlated at the between species level (r = 0.90), although this estimate had 95 % credibility intervals (Bayesian analogues to confidence intervals) that overlapped zero. The within-species correlation between density dependence and population size variability was not distinguishable from zero. Given that density dependence for Salmoniformes was highly variable within species, we next determined the joint effects of intrinsic (density-dependent) and extrinsic (density-independent) factors on the population dynamics of a threatened salmonid, the Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). We found that density-dependent and -independent factors additively contributed to population dynamics. This finding suggests that the observed within-species variability in density dependence might be attributable to local differences in the strength of density-independent factors.  相似文献   

10.
In small populations of plant species with separate sexes, it can be expected that besides the local environment also stochastic events influence population sex ratios. Biased sex ratios may in turn negatively affect genetic diversity due to increased genetic drift and, in clonal plants, due to reduced sexual reproductive output. Empirical evidence for these processes is scarce, however. We investigated the pattern of sex ratio variation and the distribution of genetic variation of the dioecious clonal forest herb Mercurialis perennis using AFLP markers. Analysis of molecular variance indicated a pronounced genetic structure. Overall within-population genetic diversity was moderate and local sex ratios were slightly male biased. The proportion of male to female plants in large populations slightly increased with increasing light penetration to the herb layer. Small populations, on the contrary, displayed high variability in sex ratios, unrelated to the local light environment. Genotypic diversity decreased with more male-biased sex ratios. We conclude that stochastic events related to small population size and the local forest environment, related to canopy closure, affect the proportion of female plants and indirectly influence local genotypic diversity, likely through the degree of sexual reproduction. This is one of the first studies to report a clear association between gender proportions and genetic diversity of a dioecious plant species in a fairly large survey.  相似文献   

11.
The demography and reproductive biology of three Epinephelus groupers (Serranidae), namely E. polyphekadion, E. tauvina, and E. howlandi in the Yaeyama Islands, Okinawa, were examined based on age assessment using otoliths and gonadal histology. The maximum ages for these three species were 26 year, 23 year, and 17 year. The von Bertalanffy growth functions were also determined for each species. The size and age at 50% female maturity were estimated to be 358 mm in total length (TL) and 6.0 year for E. polyphekadion, 371 mm TL and 6.7 year for E. tauvina, and 327 mm TL and 4.1 year for E. howlandi, respectively. Significant differences between the sexes in size and age frequencies were found in all three species, with males being larger and older than females, or transitional individuals. These results strongly indicated that the population of these three grouper species showed monandric protogynous hermaphroditism. The sex ratios of E. polyphekadion and E. tauvina were biased in favor of females, but that of E. howlandi was equivalent between sexes. The relative sizes of ripe testes indicated that the intensity of sperm competition varied among species suggesting different mating system of each species. Reproductive seasonality was similar among species, with active vitellogenesis coinciding with the annual rise in water temperature. The active spawning period was determined to be between April and May for E polyphekadion, in May for E. howlandi, and from March to June for E. tauvina.  相似文献   

12.
Genetic analyses of populations are essential to the conservation of threatened and cryptic taxa such as Chelonians. Turtles and tortoises are among the most imperiled vertebrate taxa worldwide, yet many of the natural history traits remain unknown leaving management decisions ill- or improperly informed. The eastern box turtle Terrapene c. carolina is no exception, with many gaps in our knowledge about traits such as juvenile dispersal and patterns of relatedness across the landscape, especially as it is a species not particularly tied to water and vulnerable to human disturbance. In addition, all long-term studies of this species have documented demographic population declines, even in protected habitats. In this study we explore finescale population structuring, gene flow, dispersal, and relatedness at four sites across the species range. These sites vary in habitat fragmentation and surrounding habitat quality. Many radiotelemtery and mark-recapture studies suggest that Terrapene spp. have a sedentary natural history, with small and temporally conserved home ranges and little propensity for dispersal. Based on these data we predicted that populations would be highly structured at fine geographic scales, closely related individuals (1st- and 2nd-degree relatives) would coexist in close proximity, and individuals exhibiting transient behavior would be true transients. All sites had low levels of population structuring, mean pairwise relatedness values were statistically zero, over 90 % of pairs of individuals were unrelated, 4.4–8.7 % were half-siblings, and fewer than 1.0 % were full siblings or parent-offspring pairs. These patterns were consistent across all four sites, regardless of habitat fragmentation. Furthermore, while some related pairs were found within a few meters of each other, others ranged up to 33 km apart. We found that one of two individuals with transient behavior was indeed a true genetic transient. These findings suggest that box turtles may be much more vagile than current management practices recognize. As most turtle species are strongly affected by anthropogenic disturbance, many may require much larger contiguous blocks of intact habitat for species persistence as the box turtle likely does. Management plans may therefore need to be updated to allow for safe and effective long-distance dispersal at the appropriate spatial scales in order to maintain genetic health of these species.  相似文献   

13.
Habitat fragmentation is a major threat to biodiversity, as it can alter ecological processes at various spatial and trophic scales. At the species level, fragmentation leading to the isolation of populations can trigger reductions in genetic diversity, potentially having detrimental effects on population fitness, adaptability and ultimately population persistence. Leptomyrmex pallens is a widespread rainforest ant endemic to New Caledonia but now confined to habitat patches that have been fragmented by anthropogenic fire regimes over the last 200 years. We investigated the social structure of L. pallens in the Aoupinié region (c.a. 4900 ha), and assessed the impacts of habitat fragmentation on its population genetic structure. Allele frequencies at 13 polymorphic microsatellite loci were compared among 411 worker ants from 21 nests distributed across the region. High within-nest relatedness (r = 0.70 ± 0.02), and a single queen found in 38 % of the nests by pedigree analysis indicate that the species is monogynous to weakly polygynous. Estimates of gene flow and genetic structure across the region were subsequently determined using a combined dataset of single workers per nest and of unrelated foraging workers. These estimates coupled with a comprehensive landscape genetic analysis revealed no evidence of significant population structure or habitat effects, suggesting that the Aoupinié region harbours a single panmictic population. In contrast, analyses of mitochondrial DNA sequence data revealed a high degree of genetic structuring, indicating limited maternal gene flow and suggesting that gene flow among nests is driven primarily by winged males. Overall these findings suggest that fire-induced habitat fragmentation has had little impact on the population dynamics of L. pallens. Additional studies of less mobile species should therefore be conducted to gain further insights into fire related disturbances on the unique biodiversity and function of New Caledonian ecosystems.  相似文献   

14.
The genus Leontodon L. (Asteraceae) comprises approximately 50 species with a natural distribution area covering North America, Europe, northern Africa, and western Asia. Two of these species are endemic to the Azores Archipelago: Leontodon filii and Leontodon rigens. Although both species were targeted with several taxonomic revisions, so far no studies into their genetic diversity have been carried out. In this research, the population genetic structure and diversity of both taxa were assessed using five newly developed SSR markers. Four hundred and thirty-seven individuals collected throughout the archipelago were included in the study. A total of 98 alleles (25–12 per locus, average = 19.6) and an overall excess of homozygotes (multilocus F is = 0.37, range 0.16–0.53) were found for L. rigens populations. For L. filii, 52 alleles in total (8–13 per locus, average = 10.4) were found, overall near the HW equilibrium (multilocus F is = 0.07, range ?0.25 to 0.57). The two species showed an equivalent proportion of rare alleles (L. rigens 80.6 %; L. filii 76.9 %). Both a Principal Coordinate Analysis and a Bayesian analysis proposed the existence of two well-defined groups, but pooled L. filii populations from Faial Island with L. rigens populations. The largest proportion of genetic variability was found within populations (L. rigens 72.6%; L. filii 78.9 %). The highest values of gene flow were obtained for L. filii within the central group of islands. Our results update the current distribution given for the Azorean Leontodon taxa, clearly indicating that conservation measures should be applied to several populations. The results also reveal that a revision of the Azorean Leontodon should be carried out to clarify species delimitation.  相似文献   

15.
Understanding patterns of genetic diversity and population structure for rare, narrowly endemic plant species, such as Pinguicula ionantha (Godfrey’s butterwort; Lentibulariaceae), informs conservation goals and can directly affect management decisions. Pinguicula ionantha is a federally listed species endemic to the Florida Panhandle in the southeastern USA. The main goal of our study was to assess patterns of genetic diversity and structure in 17 P. ionantha populations, and to determine if diversity is associated with geographic location or population characteristics. We scored 240 individuals at a total of 899 AFLP markers (893 polymorphic markers). We found no relationship between the estimated population size with either of two measures of diversity (proportion of loci polymorphic, P = 0.37; Nei’s gene diversity, P = 0.50). We also found low levels of population genetic structure; there was no clear relationship of genetic isolation by distance (P = 0.23) and only a small (but significant) proportion of genetic variation was partitioned amongst regions (2.4 %, P = 0.02) or populations (20.8 %, P < 0.001). STRUCTURE analysis found that the model with two inferred clusters (K = 2) best described the AFLP data; the dominant cluster at each site corresponded to the results from PCoA and Nei’s genetic distance analyses. The observed patterns of genetic diversity suggest that although P. ionantha populations are isolated spatially by distance and both natural and anthropogenic barriers, some gene flow occurs among them or isolation has been too recent to leave a genetic signature. The relatively low level of genetic diversity associated with this species is a concern as it may impair fitness and evolutionary capability in a changing environment. The results of this study provide the foundation for the development of management practices that will assist in the protection of this rare carnivorous plant.  相似文献   

16.
Many terrestrial orchids are relatively rare, and their populations are small and spatially isolated. Population genetics theory predicts that populations of such species, affected historically by random genetic drift, would maintain low levels of genetic diversity and exhibit a high degree of among-population divergence. To test this prediction, I used enzyme electrophoresis. Genetic diversity within populations of the four rare, terrestrial orchids Gymnadenia cucullata (four populations) and its congener G. camtschatica (four populations), Amitostigma gracile (four populations in one region and three in another region), and Pogonia minor (three populations each in two regions) was investigated in South Korea at the landscape level. As predicted, populations of the four species harbor low levels of genetic diversity within populations: the mean percentage of polymorphic loci, %P, the mean number of alleles per locus, A, and the average expected heterozygosity, H e, were 12.5%, 1.13, and 0.036 for G. cucullata, respectively; 18.2%, 1.18, and 0.067 for G. camtschatica; 3.0%, 1.04, and 0.009 for A. gracile; and 2.7%, 1.06, and 0.014 for P. minor. Except for G. camtschatica (F ST = 0.000), a significantly high degree of genetic divergence between conspecific populations was detected in the other three species: F ST = 0.081 for G. cucullata; 0.348 and 0.811 in two regions for A. gracile; and 0.469 and 0.758 in two regions for P. minor. In addition, individuals within populations are highly structured in the four species (overall F IS = 0.276 for G. cucullata; 0.308 for G. camtschatica; 0.758 for A. gracile; and 0.469 for P. minor), suggesting that selfing, biparental inbreeding, and/or consanguineous mating have occurred in populations of the four species. With the exception of G. camtschatica, an allele at a locus is fixed in a population, whereas alternative alleles with low or high frequencies are detected in another population across the landscape. My results suggest that evolutionary histories of G. cucullata, A. gracile, and P. minor are different from G. camtschatica. Historical genetic drift would be an important force shaping the genetic structure of the Korean populations of G. cucullata, A. gracile, and P. minor. For G. camtschatica on Ulleung Island, relatively higher levels of genetic variation within populations compared to its congener G. cucullata (H e = 0.067 vs. 0.036) and little evidence of population genetic structure among populations (F ST = 0.000) suggest that individuals were, presumably, once continuously distributed on Ulleung Island, and populations have recently been isolated by habitat fragmentation through natural succession (e.g,. probably the encroachment of woody vegetation on grasslands) or human-mediated disturbances (e.g., collections). Thus, conservation strategies for the four species should be differently developed in order to preserve genetic diversity in South Korea.  相似文献   

17.
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983–1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95–99 % throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983–2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983–1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.  相似文献   

18.
Estimating demographic parameters in rare species is challenging because of the low number of individuals and their cryptic behaviour. One way to address this challenge is to gather data from several regions or years through mark-release-recapture (MRR) and radio-tracking monitoring. However, the comparison of demographic estimates obtained using these methods has rarely been investigated. Using 5 years of intensive MRR and radio-tracking surveys of an elusive and endangered saproxylic insect, the hermit beetle (Osmoderma eremita), in two regions of France, we aimed to estimate population size at the adult stage for each sex separately and to assess differences in demographic parameter estimates between survey methods. We found that males were approximately three times more likely to be recaptured than females. Taking this into account, we determined that the sex ratio was male-biased in almost all populations, except in Malus trees, where it was female-biased. Temporal fluctuations of sex ratios were also detected in one region. The radio-tracking transmitter (450 mg) allowed only the largest individuals (>2 g) to be targeted. However, we found that, among non-equipped individuals, the larger males survived better than the smaller males. We also confirmed that transmitter-equipped individuals survived approximately 25 % better than non-equipped individuals. Extrapolating the estimates from radio-tracking surveys to the population scale may result in overly optimistic population projections. Our results revealed large temporal and spatial variations in population size and sex ratios. This knowledge is crucial for predicting the persistence of small populations in fragmented landscapes. This study also questioned the representativeness of radio-tracking surveys for insect species in estimating demographic parameters at the population scale.  相似文献   

19.
Low levels of genetic diversity in endemic species are generally attributable to the small size of their populations. This lack of genetic variability will, predictably, be more evident in those species that occur in only one or a very few localities with a total population consisting of a few dozen individuals, or sometimes fewer (i.e. ‘extremely narrow endemics’, ENEs). We used allozyme electrophoresis to survey the genetic variability of Coristospermum huteri, an endemic species from the island of Majorca (Balearic Islands, W. Mediterranean Basin) with a single natural population of about 100 individuals. As expected, allozyme variability was virtually nil for this species (P = 8.3 %, A = 1.08, H e = 0.022), which seems to be a general rule for ENEs (mean H e = 0.057). A founder effect associated with a dispersal event from the continent is probably behind the lack of genetic diversity in this highly threatened species. Preservation of the mountain summit where the plant is found (Puig Major) is essential for the survival of C. huteri, and would also guarantee the conservation of other ENEs and rare and threatened species.  相似文献   

20.
Inter-simple sequence repeat (ISSR) markers were used to investigate the levels and pattern of genetic variation within and among populations of Pteroceltis tatarinowii Maxim., an endangered plant endemic to China. Of the 76 primers screened, 11 produced highly reproducible ISSR bands. A total of 118 bands were presented from the 11 selected primers across all individuals of five natural populations, corresponding to an average of 10.73 bands per primer. The size of the ISSR bands ranged from 200 to 2,000 bp. The percentage of polymorphic loci at the population level ranged from 77.97 to 86.44%, with an average value of 82.54%. Genetic differentiation among populations was revealed based on Nei’s genetic diversity analysis (19.41%) and the nonparametric analysis of molecular variance (20.62%). The Mantel test showed a significant positive correlation between geographic distance and genetic distance (r = 0.7758, P < 0.05), indicating a role of geographic isolation in shaping the present population genetic structure of P. tatarinowii. The size of the natural populations of P. tatarinowii was noted in field observations to be very small, chiefly owing to habitat destruction and overexploitation in the past decades. Therefore, effective measures for preserving genetic diversity of this species at the population level are needed and should include protecting its natural habitats and increasing the numbers of individuals. To meet the commercial demand for this species, P. tatarinowii plantations and cultivation facilities should be established as an alternative source of raw materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号