首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.  相似文献   

2.
At first sight, the increasing trend of many large mammal populations in EU Member States are the results from successful application of EU environmental legislation. In this perspective a ‘rewilding’ Europe appears as a laudable conservation goal. It has been therefore suggested that the EU model of carnivores-humans coexistence could be of interest to several other regions of the Planet. In the present paper we critically review alleged successes of the EU conservation policies. Our conclusions suggest that some optimistic reports should be taken cautiously. Firstly, one should not lose sight of the heterogeneity of ‘Europe’ and the different histories and socio-ecological situations of the 28 Member States. Furthermore, we doubt whether the positive status of large carnivores in Eastern Europe is attributable exclusively to EU conservation policies. Long time spans necessary for demographic recovery in large carnivores sharply contradict the quite recent entry of these countries into the EU. The EU model is possible owing to the unique socio-economic development that Western Europe experienced after the Second World War. Economic growth, urbanization, rural abandonment and reforestation are the main forces behind the increase of large mammals in some areas of Western Europe. Yet this has been possible only through a considerable input of natural resources from outside EU (food, raw materials, oil, gas etc.). Therefore, although there are examples that could be considered good experiences, we are of the opinion that the EU policies as a general model is unlikely to be exportable world-wide and may have negative consequences for wildlife, even in Eastern Europe.  相似文献   

3.
From a literature review of five wildlife ecology journals since 1937, we document how using indices to monitor ungulate body condition is common practice, with the kidney fat index (KFI = weight of fat around the kidneys/weight of kidneys without fat × 100) as the favoured tool (82% of studies). In this context, we highlight the problems of using indices when underlying statistical assumptions are not met (isometry, parallel slopes between treatments). We show, with real and simulated data for two cervids with contrasting fat storage strategies, how results from analysis of variance of KFI values differ from analysis of covariance (ANCOVA) of raw data. We conclude that the KFI is affected by the restrictions typically associated with derived index values, and as a consequence, statistical analysis of the KFI could generate spurious results leading to erroneous interpretations concerning variation in body condition of ungulate populations. Thus, we recommend analysing fat weight as an untransformed variable in ANCOVA (kidney weight as covariate) to describe body condition variation in ungulates. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Sarcomas display varied degrees of karyotypic abnormality, vascularity and mesenchymal differentiation. We have reported that a strain of telomerized adult human bone marrow mesenchymal stem cells (hMSC-TERT20) spontaneously evolved a tumorigenic phenotype after long-term continuous culture. We asked to what extent our hMSC-TERT20 derived tumors reflected events found in human sarcomas using routine histopathological procedures. Early versus late passage hMSC-TERT20 cultures persistently expressed mesenchymal lineage proteins e.g. CD105, CD44, CD99 and vimentin. However, late passage cultures, showed increased immunohistochemical staining for CyclinD1 and p21WAF1/Cip1, whereas p27Kip1 staining was reduced. Notably, spectral karyotyping showed that tumorigenic hMSC-TERT20 cells retained a normal diploid karyotype, with no detectable chromosome abnormalities. Consistent with the bone-forming potential of early passage hMSC-TERT20 cells, tumors derived from late passage cells expressed early biomarkers of osteogenesis. However, hMSC-TERT20 cells were heterogeneous for alpha smooth muscle actin (ASMA) expression and one out of six hMSC-TERT20 derived single cell clones was strongly ASMA positive. Tumors from this ASMA+ clone had distinctive vascular qualities with hot spots of high CD34+ murine endothelial cell density, together with CD34- regions with a branching periodic acid Schiff reaction pattern. Such clone-specific differences in host vascular response provide novel models to explore interactions between mesenchymal stem and endothelial cells. Despite the lack of a characteristic chromosomal translocation, the histomorphology, biomarkers and oncogenic changes were similar to those prevalent for Ewing's sarcomas. The phenotype and ontogenesis of hMSC-TERT20 tumors was consistent with the hypothesis that sarcomas may arise from hMSC, providing a unique diploid model for exploring human sarcoma biology.  相似文献   

5.
Summary Recent evidence suggests that integrin is abundant in endomembranes of plant cells, and the endomembranes are clad by a sheath of cytoskeleton including F-actin. A role for endomembrane integrin and the endomembrane sheath is proposed: this system might orchestrate metabolic regulation by providing and modulating loci for channelling, and might accelerate channeling as needed by dragging the endoplasmic reticulum (ER) and organelles through the cytoplasm. To accomplish this streaming, F-actin might lever against the rest of the endomembrane sheath and the ER might also lever against adhesion sites (i.e., plasmodesmata and plasmalemmal control centers). As an important agent in the control of cellular activities, according to this model, the endomembrane sheath would play a major part in responses to diverse signals and stresses, and under extreme stress cell survival would depend on the ability of the system to maintain enough integrity to direct critical syntheses and degradations.Abbreviations EMSy endomembrane system - EMSh endomembrane sheath - PCC plasmalemmal control center  相似文献   

6.
Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants.  相似文献   

7.
Normal waking mentation is the outcome of the combined action of both electrophysiological and neurochemical antagonistic and complementary activating and inhibitory influences occurring mainly in the cerebral cortex. The chemical ones are supported principally by acetylcholine, and noradrenaline and serotonin, respectively. During rapid eye movement (REM) sleep, the monoaminergic silence - except dopaminergic ongoing activity - disrupts this equilibrium and seems to be responsible for disturbances of mental activity characteristic of dreaming. This imbalance could cause disconnectivity of cortical areas, failure of latent inhibition and possibly the concomitant prefrontal dorsolateral deactivation. Moreover, the decrease of prefrontal dopaminergic functioning could explain the loss of reflectiveness in this sleep stage. All these phenomena are also encountered in schizophrenia. The psychotic-like mentation of dreaming (hallucinations, delusions, bizarre thought processes) could result from the disinhibition of dopamine influence in the nucleus accumbens by the noradrenergic and serotonergic local silence and/or the lifting of glutamate influence from the prefrontal cortex and hippocampus. We hypothesize that, during REM sleep, the increase of dopamine and the decrease of glutamate release observed in nucleus accumbens reach the threshold values at which psychotic disturbances arise during wakefulness. Whatever the precise mechanism, it seems that the functional state of the prefrontal cortex and nucleus accumbens is the same during dreaming sleep stage and in schizophrenia. The convergent psychological, electrophysiological, tomographic, pharmacological and neurochemical criteria of REM sleep and schizophrenia suggest that this sleep stage could become a good neurobiological model of this psychiatric disease.  相似文献   

8.
Nutritional conditions during key periods of development, when the architecture and modus operandi of the body become established, are of profound importance in determining the subsequent life-history trajectory of an organism. If developing individuals experience a period of nutritional deficit, they can subsequently show accelerated growth should conditions improve, apparently compensating for the initial setback. However, recent research suggests that, although compensatory growth can bring quick benefits, it is also associated with a surprising variety of costs that are often not evident until much later in adult life. Clearly, the nature of these costs, the timescale over which they are incurred and the mechanisms underlying them will play a crucial role in determining compensatory strategies. Nonetheless, such effects remain poorly understood and largely neglected by ecologists and evolutionary biologists.  相似文献   

9.
10.
11.
12.
Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces "mucus" with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.  相似文献   

13.
Recently, our knowledge of yeast mitochondrial biogenesis has considerably progressed. This concerns the import machinery that guides preproteins synthesized on the cytoplasmic ribosomes through the mitochondrial outer and inner membranes, as well as the inner membrane insertion machinery of mitochondrially encoded polypeptides, or the proteins participating in the assembly and quality control of the respiratory complexes and ATP synthase. More recently, two new fields have emerged, biosynthesis of the iron-sulfur clusters and dynamics of the mitochondrion. Many of the newly discovered yeast proteins have homologues in human mitochondria. Thus, Saccharomyces cerevisiae has proven a particularly suitable simple organism for approaching the molecular bases of a growing number of human mitochondrial diseases caused by mutations in nuclear genes identified by positional cloning.  相似文献   

14.
15.
16.
Salinity tolerance of Arabidopsis: a good model for cereals?   总被引:2,自引:0,他引:2  
Arabidopsis is a glycophyte species that is sensitive to moderate levels of NaCl. Arabidopsis offers unique benefits to genetic and molecular research and has provided much information about both Na(+) transport processes and Na(+) tolerance. A compilation of data available on Na(+) accumulation and Na(+) tolerance in Arabidopsis is presented, and comparisons are made with several crop plant species. The relationship between Na(+) tolerance and Na(+) accumulation is different in Arabidopsis and cereals, with an inverse relationship often found within cereal species that is not as evident in Arabidopsis ecotypes. Results on salinity tolerance obtained in Arabidopsis should therefore be extrapolated to cereals with caution. Arabidopsis remains a useful model to study and discover plant Na(+) transport processes.  相似文献   

17.
18.
19.
Lysosomes and lysosome-related organelles constitute a system of acid compartments that interconnect the inside of the cell with the extracellular environment via endocytosis, phagocytosis and exocytosis. In recent decades it has been recognized that lysosomes are not just wastebaskets for disposal of unused cellular constituents, but that they are involved in several cellular processes such as post-translational maturation of proteins, degradation of receptors and extracellular release of active enzymes. By complementing the autophagic process, lysosomes actively contribute to the maintenance of cellular homeostasis. Proteolysis by lysosomal cathepsins has been shown to mediate the death signal of cytotoxic drugs and cytokines, as well as the activation of pro-survival factors. Secreted lysosomal cathepsins have been shown to degrade protein components of the extracellular matrix, thus contributing actively to its re-modelling in physiological and pathological processes. The malfunction of lysosomes can, therefore, impact on cell behaviour and fate. Here we review the role of lysosomal hydrolases in several aspects of the malignant phenotype including loss of cell growth control, altered regulation of cell death, acquisition of chemoresistance and of metastatic potential. Based on these observations, the lysosome is proposed as a potential target organelle for the chemotherapy of tumours. We will also present some recent data concerning the technologies for delivering chemotherapeutic drugs to the endosomal-lysosomal compartment and the strategies to improve their efficacy.  相似文献   

20.
The yeast spindle pole body (SPB) is the functional equivalent of the centrosome and forms the two poles of the mitotic spindle. Before mitosis, both SPBs and centrosomes are present as single copies and must be duplicated to form the bipolar spindle. SPB components have been identified using a combination of biochemistry and genetics, and their role during SPB duplication has been analysed using temperature-sensitive mutants. In this article, we describe structural aspects of SPB duplication and their possible relationship to centrosome duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号