首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
In order to elucidate the taxonomic status of the Fejervarya limnocharis complex relative to Malaysia and Japan populations, morphological observations and molecular phylogenetic analysis were carried out using three populations from Indonesia (type locality), Malaysia, and Japan. In addition, we conducted histological and spermatogenic observations using hybrids among these populations. Principal component and cluster analyses demonstrated that these populations could be clearly separated from one another. Abnormal testes were found in the hybrids between the Japan and Indonesia populations and between the Japan and Malaysia populations, but testes of the controls and hybrids between the Malaysia and Indonesia populations were quite normal. The mean number of univalents per cell was 5.42, 4.58, and 0.20 in hybrids between the Indonesia and Japan populations, Malaysia and Japan populations, and Indonesia and Malaysia populations, respectively. Sequence divergences in 16S rRNA and Cyt b genes were 0-0.4% (xbar=0.2%) and 0.3-1.5% (xbar=1.0%), respectively, between the Malaysia and Indonesia populations, and 2.4-2.6% (xbar=2.5%) and 11.0-12.0% (xbar=11.5%) between the Japan population and F. limnocharis complex, including the Malaysia and Indonesia populations and F. multistriata from China. This study indicated that the Malaysia population and F. multistriata from China should be designated as a subspecies of topotypic F. limnocharis, and that the Japan population should be regarded as a distinct species.  相似文献   

2.
We describe a new species of dicroglossid frog of the Fejervarya limnocharis complex from western Honshu, Japan Mainland. The new species, Fejervarya kawamurai, is genetically closer to F. sakishimensis than to F. limnocharis. It differs from F. sakishimensis by smaller tympanum, head, forelimb, hindlimb, foot, and tibia lengths, all relative to snout-vent length, and from F. multistriata by relatively shorter forelimb, hindlimb, foot, and tibia. From F. limnocharis and F. iskandari, it is differentiated by relatively smaller forelimb, hindlimb, foot, and tibia lengths. Taxonomic problems of Fejervarya populations occurring in Central Ryukyus, continental China, and Taiwan are discussed.  相似文献   

3.
The rice frog Rana limnocharis is widely distributed in Southeast Asia and the rest of the Asian region extending from India to Japan. In Japan, the Sakishima-island populations of this species were regarded as a distinct species based on morphological and genetic divergences. The main purposes of this study were to confirm the presence of intraspecific reproductively isolating mechanisms in the Sakishima-island populations of R. limnocharis, and to clarify molecular inter- and intraspecific relationships of R. limnocharis and an allied species, Rana cancrivora. The hybridization experiments revealed that there were no reproductively isolating mechanisms between the Sakishima-island populations and other populations of R. limnocharis. The molecular evolutionary relationships were investigated by analyzing nucleotide sequences of the mitochondrial 12S and 16S rRNA genes using 12 populations of R. limnocharis from Japan and Taiwan, and two populations of R. cancrivora from Thailand and the Philippines. The phylogenetic trees constructed by the NJ method showed that the two populations of R. cancrivora were clearly separated from the 12 populations of R. limnocharis, and that the 12 populations of R. limnocharis were broadly divided into three clades; the first comprising eight populations from the main islands of Japan, the second comprising the Sakishima-island populations, and the third comprising the Okinawa-island and Taiwan populations. Interestingly, the Okinawa-island and Taiwan populations of R. limnocharis showed a close relationship that possibly reflected a secondary contact between the two populations. Based on the present crossing experiments and molecular data, it seems reasonable to regard the Sakishima-island populations as a single subspecies of R. limnocharis.  相似文献   

4.
In order to elucidate the genetic relationships and reproductive-isolation mechanisms among the Fejervarya limnocharis complex from Indonesia and other Asian countries, allozyme analyses and crossing experiments were carried out using 208 individuals from 21 localities in eight Asian countries. The allozyme analyses revealed that 17 enzymes examined were controlled by genes at 27 loci, and that 7.9 phenotypes were produced by 5.2 alleles on average. The two species recognized in F. limnocharis sensu lato from Southeast Asia (i.e., F. limnocharis sensu stricto and F. iskandari) were found to occur sympatrically at three localities (Bogor, Cianjur and Malingping), all on Java, Indonesia. Fejervaya iskandari was dominant at each of these localities and showed substantial geographic genetic variation. Laboratory-produced hybrids between F. limnocharis and F. iskandari from Java became underdeveloped and died at the tadpole stage, suggesting that these species are completely isolated by hybrid inviability. Hybrids between topotypic F. limnocharis and the Malaysian and Japanese conspecific populations developed normally to metamorphosis. Likewise, hybrids between topotypic F. iskandari and the Thailand and Bangladesh conspecific populations also showed normal viability throughout larval development. The present allozyme analyses and crossing experiments strongly suggested the presence of two distinct forms, the large type and the small type, in the F. limnocharis complex from Asia, and further subdivision of the large type into the F. limnocharis assemblage and the F. iskandari assemblage. The small type was found in samples from India, Thailand, Bangladesh and Sri Lanka, and included at least three different species. The sample from Pilok, Thailand, was considered to represent an undescribed species.  相似文献   

5.
The rice frog, Fejervarya multistriata, is an amphibian widely distributed in China. In this study, we sampled the species across its distributional area in China and sequenced the mtDNA D-loop to investigate the genetic diversity and geographical pattern of the frog population. The results revealed 38 haplotypes in the population, with K2P values varying from 0.19% to 4.22%. Both a phylogenetic analysis and a nested clade analysis (NCA) detected two geographically isolated lineages respectively distributed around the Yangtze drainage (Yangtze lineage) and the south of China (southern lineage). NCA inferred a contiguous range expansion within the Yangtze lineage and allopatric fragmentation within the southern lineage, which might be partly due to the limited samples from this lineage. Accordingly, Fu's Fs test also indicated a population expansion after glacial movement. Therefore, we assumed that the species history responding to glacial events shaped the present population pattern of F. multistriata on the Chinese mainland.  相似文献   

6.
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.  相似文献   

7.
Information from allozymes, ploidy levels, morphology, cross-compatibility and biogeography suggests that the easternmost occurrences of the Ponto-Caucasian Viola sieheana should be considered to belong to a separate species, V. caspia. Morphological characters delimitating V. sieheana and V. caspia are presented and discussed. The main distribution of V. sieheana s. str. is in the eastern Balkans, Turkey, Cyprus, and The Lebanon, and of V. caspia in the Caspio-Caucasian region westwards to Crimea and north-eastern Turkey. Their distributions in the intermediate areas remain unknown. Plants of V. sieheana s. str. from Cyprus, Greece, and Turkey were all blue-flowered and had the chromosome number 2n?=?12x?=?60. Its presence in the Peloponnese (Parnon, Ta?getos, Menalon) and in the Pindhos mountains, Greece, was confirmed. Reports of plants with 2n?=?8x?=?40 from these stations seem to refer to the sterile hybrid V. reichenbachiana?×?sieheana which is locally abundant. V. caspia from Azerbaijan had 2n?=?8x?=?40 and had either whitish or blue flowers. In spite of sympatry and almost complete cross-compatibility, the two corolla colour morphs showed strong allozymic differentiation in four out of seven isozyme systems, suggesting reproductive isolation and incipient speciation. Within section Viola, V. caspia and V. sieheana seem no more closely related to each other than to either of the other investigated European species. The possibility that V. sieheana is an ancient allopolyploid involving the Greek narrow endemic V. dirphya (2n?=?40) is discussed.  相似文献   

8.
《Mycological Research》2007,111(2):163-175
The two rust genera with the largest number of species are Puccinia Pers. ex Pers. and Uromyces (Link) Unger in the family Pucciniaceae (Uredinales). The hosts of these pathogens include representatives from almost all major angiosperm orders. Despite their ecological and economic importance, the status of Puccinia and Uromyces as distinct genera has been disputed, and little is known about relationships within and among these groups. Here we present phylogenetic analyses based on sequence data from the translation elongation factor 1α gene for over 60 species in the family Pucciniaceae. In particular, we investigate evolutionary relationships between Puccinia and Uromyces. A relatively smaller phylogeny using the beta-tubulin 1 gene was generated to test support for this phylogeny. Two main phylogenetic clades were identified and indicate at least two radiations within the Pucciniaceae. As expected neither Puccinia s. lat. nor Uromyces s. lat. are supported as monophyletic groups by either of the protein coding genes. However, both Puccinia sensu stricto (type P. graminis), and Uromyces sensu stricto (type U. appendiculatus) constitute distinct clades. In general, members of Uromyces spp. occurred scattered throughout the phylogeny suggesting that they represent more recent radiations. Several host families are found in both of the two main clades while two families, Poaceae and Cyperaceae, are separated, with one in each of the two main clades.  相似文献   

9.

Background  

Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups.  相似文献   

10.
The phylogenetic relationships of nine species of freshwater sponges, representing the families Spongillidae, Lubomirskiidae, and Metaniidae, were inferred from analyses of 18S rDNA, cytochrome oxidase subunit I (COI) mtDNA, and internal transcribed spacer 2 (ITS2) rDNA sequences. These species form a strongly supported monophyletic group within the Demospongiae, with the lithistid Vetulina stalactites as the sister taxon. Within the freshwater sponge clade, the basal taxon is not resolved. Depending upon the method of analysis and sequence, the metaniid species, Corvomeyenia sp., or the spongillid species, Trochospongilla pennsylvanica , emerges as the basal species. Among the remaining freshwater sponge species, the spongillids, Spongilla lacustris and Eunapius fragilis , form a sister group to a clade comprised of the spongillid species, Clypeatula cooperensis , Ephydatia fluviatilis , and Ephydatia muelleri , and the lubomirskiid species, Baikalospongia bacillifera and Lubomisrkia baicalensis . C. cooperensis is the sister taxon of E. fluvialitis , and E. muelleri is the sister taxon of ( B. bacillifera + L. baicalensis ). The family Spongillidae and the genus Ephydatia are thus paraphyletic with respect to the lubomirskiid species; Ephydatia is also paraphyletic to C. cooperensis . We suggest that C. cooperensis be transferred to the genus Ephydatia and that the family Lubomirskiidae be subsumed into the Spongillidae.  相似文献   

11.
12.
Albugo candida is a destructive fungus infecting brassicaceous hosts. The genetic diversity within the A. candida complex from various host plants was investigated by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and the cytochrome c oxidase subunit II (COX2) region of mtDNA. The aligned nucleotide sequences of A. candida shared significantly high distances, up to 20.4 and 8.9%, in two genes. The phylogenetic trees, obtained using the Bayesian method and maximum parsimony analysis, showed two separate groups that corresponded to the host genera. Group I included A. candida isolates infecting Arabis, Autrieta, Berteroa, Biscutella, Brassica, Cardaminopsis, Diplotaxis, Eruca, Erysimum, Heliophila, Iberis, Lunaria, Raphanus, Sinapis, Sisymbrium, and Thlaspi. Group II contained all isolates from Capsella, Descurainia, Diptychocarpus, Draba, and Lepidium. The genetic similarities between the two genes among isolates within Group I were 99.0-100% and 99.6-100%, while those within Group II were 90.4-100% and 91.1-100%, respectively, showing considerably lower values than for Group I. The A. candida isolates from Capsella bursa-pastoris in Korea are clearly separated by sequence analysis for the two genes compared to those from Wales, England, and the USA. Based on the molecular data from the two genes, we suggest the high degree of genetic diversity exhibited within A. candida complexes warrants their division into several distinct species.  相似文献   

13.
The genetic relationships among 9 taxa of Anisakis Dujardin, 1845 (A. simplex (sensu stricto), A. pegreffii, A. simplex C., A. typica, A. ziphidarum, A. physeteris, A. brevispiculata, A. paggiae, and Anisakis sp.) were inferred from sequence analysis (629 bp) of the mitochondrial cox2 gene. Genetic divergence among the considered taxa, estimated by p-distance, ranged from p = 0.055, between sibling species of the A. simplex complex, to p = 0.12, between morphologically differentiated species, i.e., A. ziphidarum and A. typica. The highest level was detected when comparing A. physeteris, A. brevispiculata, and A. paggiae versus A. simplex complex (on average p = 0.13) or versus A. typica (on average p = 0.14). Sequence data from the newly identified Anisakis sp. poorly aligned with other Anisakis species but was most similar to A. ziphidarum (p = 0.08). Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes. All analyses delineated two main claides, the first encompassing A. physeteris, A. brevispiculata, and A. paggiae as a sister group to all the remaining species, and the second comprising the species of the A. simplex complex (A. simplex (s.s.), A. pegreffii and A. simplex C), A. typica, A. ziphidarum, and Anisakis sp. In general, mtDNA-based tree topologies showed high congruence with those generated from nuclear data sets (19 enzyme-loci) and with morphological data delineating adult and larval stages of the Anisakis spp.; however, precise positioning of A. typica and A. ziphidarum remain poorly resolved, though they consistently clustered in the same clade as Anisakis sp. and the A. simplex complex. Comparison of anisakid data with those currently available for their cetacean-definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies.  相似文献   

14.
We have analyzed the phylogenetic relationships of 160 specimens from 88 samples representing all defined species of the African Aplocheiloid subgenus Chromaphyosemion in order to examine the monophyly of this group, the species interrelationships, and to reveal trends in chromosomal evolution and formulate hypotheses about their evolutionary history. The data set comprised 1153 total nucleotides from the mitochondrial 12S rRNA, cytochrome oxidase I, and D-loop. The molecular-based topologies were analyzed by maximum parsimony, maximum likelihood, distance method and Bayesian inference support the monophyly of the subgenus Chromaphyosemion. All populations with ambiguous taxonomic status were assigned to an already described species except A. sp. Rio Muni which corresponds to a still undescribed species. Aphyosemion alpha and A. lugens were in basal position in the different trees that indicate a possible origin of the subgenus Chromaphyosemion in the South Cameroon-North Gabon region. Furthermore, the South Cameroon region (between 2 degrees and 3 degrees of North latitude) that accommodates half of the Chromaphyosemion species is considered to have been a refuge zone during the late quaternary dry events that Africa experienced. Phylogenetic relationships among the subgenus also revealed that chromosomal evolution is complex and should be studied at the intraspecific level.  相似文献   

15.
 The phylogenetic position of Parasitaxus (Podocarpaceae) has been inferred from a cladistic analysis of molecular characters from chloroplast and nuclear genomes including all genera of Podocarpaceae. In all 24 most parsimonious trees, based on combined datasets, Phyllocladus resided outside Podocarpaceae s. str. while Lepidothamnus was basal to the latter. Most other genera were arranged in two major clades. The evidence confirms previous studies, which have suggested a relationship between Lagarostrobos, Manoao and Parasitaxus. Parasitaxus is not directly related to its host Falcatifolium taxoides. Instead it appears to be most closely related to Manoao and Lagarostrobos. No other members of this group now occur on New Caledonia. However, if the evolution of Parasitaxus were autochthonous, a free-living member of this group must once have occurred there. An accelerated evolutionary rate of the chloroplast sequence analysed was suggested, indicating that the plant behaves like a holoparasite. Received January 4, 2002; accepted April 3, 2002 Published online: September 13, 2002  相似文献   

16.
17.
Systematics and taxonomy of hares of the genus Lepus (Lagomorpha) are under contentious debate, and phylogenetic relationships among many taxa are not well understood. Here we study genetic differentiation and evolutionary relationships among North African hares, currently considered subspecies of Lepus capensis , cape hares ( L. capensis ) from the Cape province in South Africa, and brown hares ( L. europeaus ) from Europe and Anatolia, using maternally (mtDNA) and biparentally (allozymes) inherited markers. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of a c. 1.8 kb long segment of the mitochondrial control region using eight hexanucleotide-recognizing restriction endonucleases yielded 28 haplotypes, and horizontal starch gel electrophoresis of proteins encoded by 25 structural gene loci revealed 52 alleles at 18 polymorphic loci. Diverse phylogenetic analyses (neighbor joining dendrogram, median joining network, multidimensional scaling of pairwise distances, AMOVA, F -statistics, hierarchical F -statistics) of genetic variants revealed marked substructuring of mtDNA into three phylogeographic groups, namely an African, a central European, and an Anatolian, but a somewhat less pronounced overall differentiation of the nuclear genome, despite a relatively high number of population-specific (private) alleles. However, all our results are not incongruent with Petter's (1959: Mammalia 23 , 41; 1961: Z. f. Säugetierkunde 26 , 30; 1972 : Société Des Sciences Naturelles et Physiques du Maroc 52 , 122) hypothesis that North African hares generally belong to L. capensis and that brown hares should be included in this species as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号