首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular spikes were recorded from cell bodies of sympathetic preganglionic neurones in spinal segments T1-T3 of the cat. Each neurone was identified by its antidromic response to electrical stimulation of the sympathetic chain and was found in histological sections to lie within the intermediolateral nucleus. Physiological properties studied in detail included basal activity, spike configuration, and latency of antidromic activation. Also studied, in tests with paired stimuli, were the threshold interstimulus interval evoking two responses, as well as changes in amplitude and latency of the second spike which occurred at intervals near this threshold. Approximately 60% of the units studied were spontaneously active, the rest were silent. Spontaneous activity was characterized by a slow (mean = 3.1 +/- 2.6 (SD) spikes/s), irregular pattern of discharge. With approximately one-third of the cases there was a periodic pattern of discharge in phase with oscillations in blood pressure. This correlation of phasic activity suggests that many of the units studied were involved specifically in cardiovascular function. Silent and spontaneously active units could not be differentiated on the basis of latency of antidromic activation or threshold interstimulus interval; mean latency for the two groups was 7.2 +/- 4.9 ms, mean threshold interval was 6.4 +/- 4.7 ms. Thus, with the exception of basal activity, the physiological properties studied failed to indicate more than a single population of neurones. These results therefore suggest that the sympathetic preganglionic neurones in the intermediolateral nucleus subserving varied autonomic functions share overlapping physiological properties, and that functional differentiation of these neurones may be based on differences in synaptic inputs.  相似文献   

2.
An anterograde biocytin and a retrograde WGA-colloidal gold study in the rat can provide information about reciprocal communication pathways between the red nucleus and the trigeminal sensory complex. No terminals were found within the trigeminal motor nucleus, in contrast with the facial motor nucleus. A dense terminal field was observed in the parvicellular reticular formation ventrally to the trigeminal motor nucleus. The parvicellular area may be important for the control of jaw movements by rubrotrigeminal inputs. On the other hand, the contralateral rostral parvicellular part of the red nucleus receives terminals from the same zone in the rostral part of the trigeminal sensory complex, where retrogradely labelled neurones were found after tracer injections into the red nucleus. Such relationships could be part of a control loop for somatosensory information from the orofacial area.  相似文献   

3.
Alheid  G. F.  Gray  P. A.  Jiang  M. C.  Feldman  J. L.  McCrimmon  D. R. 《Brain Cell Biology》2002,31(8-9):693-717
A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 μm2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 μm2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.  相似文献   

4.
Although it is well established that bulbospinal neurons located in the rostral ventrolateral medulla (RVLM) play a pivotal role in regulating sympathetic nerve activity and blood pressure, virtually all neurophysiological studies of this region have been conducted in anesthetized or decerebrate animals. In the present study, we used time- and frequency-domain analyses to characterize the naturally occurring discharges of RVLM neurons in conscious cats. Specifically, we compared their activity to fluctuations in carotid artery blood flow to identify neurons with cardiac-related (CR) activity; we then considered whether neurons with CR activity also had a higher-frequency rhythmic firing pattern. In addition, we ascertained whether the surgical removal of vestibular inputs altered the rhythmic discharge properties of RVLM neurons. Less than 10% of RVLM neurons expressed CR activity, although the likelihood of observing a neuron with CR activity in the RVLM varied between recording sessions, even when tracking occurred in a very limited area and was higher after vestibular inputs were surgically removed. Either a 10-Hz or a 20- to 30-Hz rhythmic discharge pattern coexisted with the CR discharges in some of the RVLM neurons. Additionally, the firing rate of RVLM neurons, including those with CR activity, decreased after vestibular lesions. These findings raise the prospect that RVLM neurons may or may not express rhythmic firing patterns at a particular time due to a variety of influences, including descending projections from higher brain centers and sensory inputs, such as those from the vestibular system.  相似文献   

5.
Activation of neurons arising in the rostral ventrolateral medulla evokes a pressor response in the rat and the rabbit. This region of the medulla gives rise to bulbospinal neurons containing many different neurotransmitters, including amines such as adrenaline, noradrenaline and serotonin, and neuropeptides such as substance P and neuropeptide Y. Colocalization of amines and neuropeptides has been described in some neurons descending from the rostral ventrolateral medulla. In this paper we discuss the evidence that bulbospinal serotonin-containing neurons (B3) and adrenaline-containing neurons (C1) arising from this part of the medulla exert pressor effects by distinct central pathways and conclude that they do. We also consider the possibility that the pressor effects of activating these two groups of neurons are associated with release of neuropeptides and highlight evidence that substance P is released into the spinal cord by activation of descending serotonin-containing neurons, while neuropeptide Y may be released by activation of bulbospinal adrenaline-containing neurons.  相似文献   

6.
The rostral ventrolateral medulla contains presympathetic neurons that project monosynaptically to sympathetic preganglionic neurons (SPN) in the spinal cord and are essential for the tonic and reflex control of the cardiovascular system. SPN directly innervate the adrenal medulla and, via postganglionic axons, affect the heart, kidneys, and blood vessels to alter sympathetic outflow and hence blood pressure. Over 80% of bulbospinal, catecholaminergic (C1) neurons contain pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA. Activation of PACAP receptors with intrathecal infusion of PACAP-38 causes a robust, prolonged elevation in sympathetic tone. Given that a common feature of most forms of hypertension is elevated sympathetic tone, this study aimed to determine in the spontaneously hypertensive rat (SHR) and the Wistar Kyoto rat (normotensive control) 1) the proportion of C1 neurons containing PACAP mRNA and 2) responsiveness to intrathecal PACAP-38. We further investigated whether intrathecal infusion of the PACAP antagonist, PACAP(6-38), reduces the hypertension in the SHR. The principal findings are that 1) the proportion of PACAP mRNA-containing C1 neurons is not different between normotensive and hypertensive rats, 2) intrathecal PACAP-38 causes a strain-dependent, sustained sympathoexcitation and tachycardia with variable effects on mean arterial pressure in normotensive and hypertensive rats, and 3) PACAP(6-38) effectively attenuated the effects of intrathecal PACAP-38, but had no effect alone, on any baseline variables. This finding indicates that PACAP-38 is not tonically released in the spinal cord of rats. A role for PACAP in hypertension in conscious rats remains to be determined.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide present in the rat brain stem. The extent of its localization within catecholaminergic groups and bulbospinal sympathoexcitatory neurons is not established. Using immunohistochemistry and in situ hybridization, we determined the extent of any colocalization with catecholaminergic and/or bulbospinal projections from the brain stem was determined. PACAP mRNA was found in tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the C1-C3 cell groups. In the rostral ventrolateral medulla (RVLM), PACAP mRNA was found in 84% of the TH-ir neurons and 82% of bulbospinal TH-ir neurons. The functional significance of these PACAP mRNA positive bulbospinal neurons was tested by intrathecal administration of PACAP-38 in anaesthetized rats. Splanchnic sympathetic nerve activity doubled (110%) and heart rate rose significantly (19%), although blood pressure was unaffected. In addition, as previously reported, PACAP was found in the A1 cell group but not in the A5 cell group or in the locus coeruleus. The RVLM is the primary site responsible for the tonic and reflex control of blood pressure through the activity of bulbospinal presympathetic neurons, the majority of which contain TH. The results indicate 1) that pontomedullary neurons containing both TH and PACAP that project to the intermediolateral cell column originate from C1-C3 and not A5, and 2) intrathecal PACAP-38 causes a prolonged, sympathoexcitatory effect.  相似文献   

8.
We examined the effects of destroying bulbospinal catecholaminergic neurons with the immunotoxin anti-dopamine beta-hydroxylase-saporin (anti-DbetaH-Sap) on splanchnic nerve activity (SNA) and selected sympathetic reflexes in rats. Anti-DbetaH-Sap was administered into the thoracic spinal cord with the retrograde tracer fast blue. After 3-5 wk, anti-DbetaH-Sap eliminated most bulbospinal C1 (>74%), C3 ( approximately 84%), A5 ( approximately 98%), and A6 cells. Noncatecholaminergic bulbospinal neurons of the rostral ventrolateral medulla and serotonergic neurons were spared. Under chloralose anesthesia, mean arterial pressure and heart rate of anti-DbetaH-Sap-treated rats (3-5 wk) were normal. Resting SNA was not detectably altered, but the baroreflex range and gain were reduced approximately 40% (P < 0.05). Phenyl biguanide-induced decreases in mean arterial pressure, heart rate, and SNA were unchanged by anti-DbetaH-Sap, but the sympathoexcitatory response to intravenous cyanide was virtually abolished (P < 0.05). Rats that received spinal injections of saporin conjugated to an anti-mouse IgG had intact bulbospinal C1 and A5 cells and normal physiological responses. These data suggest that C1 and A5 neurons contribute modestly to resting SNA and cardiopulmonary reflexes. However, bulbospinal catecholaminergic neurons appear to play a prominent sympathoexcitatory role during stimulation of chemoreceptors.  相似文献   

9.
Like virtually all other physiological control systems, the sympathetic nervous system controlling cardiovascular function is characterized by the presence of rhythmic activity. These include slow rhythms with frequencies at or below that of the respiration and rapid rhythms with frequencies at or above that of the heart beat. The rapid rhythms are the subject of this review. The specific questions entertained are as follows: (1) Are the rapid cardiac-related and 10-Hz rhythms inherent to central sympathetic networks, or are they imposed on sympathetic nerve discharge (SND) by extrinsic periodic inputs? (2) Does basal SND arise from an anatomically circumscribed "vasomotor center" composed of pacemaker neurons in the rostral ventrolateral medulla or from an anatomically distributed network oscillator composed of different types of brainstem neurons, none of which necessarily have intrinsic pacemaker properties? (3) Are the rapid rhythms generated by single circuits or by systems of coupled oscillators, each with a separate target? (4) Are the rapid rhythms in SND simply by-products of the sympathetic generating mechanisms, or do they subserve selective and special functions, such as the formulation of differential patterns of spinal sympathetic outflow that support particular behaviors? The controversial aspects of these issues and the state-of-the-art analytical methods used to study them are stressed in this review.  相似文献   

10.
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.  相似文献   

11.
Despite considerable interest in the neural mechanisms that regulate muscle blood flow, the descending pathways that control sympathetic outflow to skeletal muscles are not adequately understood. The present study mapped these pathways through the transneuronal transport of two recombinant strains of pseudorabies virus (PRV) injected into the gastrocnemius muscles in the left and right hindlimbs of rats: PRV-152 and PRV-BaBlu. To prevent PRV from being transmitted to the brain stem via motor circuitry, a spinal transection was performed just below the L2 level. Infected neurons were observed bilaterally in all of the areas of the brain that have previously been shown to contribute to regulating sympathetic outflow: the medullary raphe nuclei, rostral ventrolateral medulla (RVLM), rostral ventromedial medulla, A5 adrenergic cell group region, locus coeruleus, nucleus subcoeruleus, and the paraventricular nucleus of the hypothalamus. The RVLM, the brain stem region typically considered to play the largest role in regulating muscle blood flow, contained neurons infected following the shortest postinoculation survival times. Approximately half of the infected RVLM neurons were immunopositive for tyrosine hydroxylase, indicating that they were catecholaminergic. Many (47%) of the RVLM neurons were dually infected by the recombinants of PRV injected into the left and right hindlimb, suggesting that the central nervous system has a limited capacity to independently regulate blood flow to left and right hindlimb muscles.  相似文献   

12.
Microglia are known to be activated in the hypothalamic para-ventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM). Systemic injection of LPS induced microglial activation in the PVN, increased the frequency of spontaneous firing activity of PVN-RVLM neurons, reduced GABAergic inputs into these neurons, and increased plasma NE levels and heart rate. Systemic minocycline injection blocked all the observed LPS-induced effects. Our results indicate that LPS increases the firing rate and decreases GABAergic transmission in PVN-RVLM neurons associated with sympathetic outflow and the alteration is largely attributed to the activation of microglia. Our findings provide some insights into the role of microglial activation in regulating the activity of PVN-RVLM neurons associated with modulation of sympathetic outflow in cardiovascular diseases.  相似文献   

13.
Orexin A (or hypocretin 1)-immunoreactive neurons in the rat lateral hypothalamus project to several areas of the medulla oblongata that are closely associated with cardiovascular regulation. The present study was undertaken to further strengthen the hypothesis that orexin A accelerates cardiovascular response by activating sympathoexcitatory neurons in the rat rostral ventrolateral medulla (RVLM). First, immunohistochemical studies revealed the presence of orexin A-immunoreactive fibers in the RVLM. Double labeling the sections with orexin A- and tyrosine hydroxylase (TH)-antisera further showed that orexin A-immunoreactive fibers are in close proximity with TH-immunoreactive neurons, some of which may be barosensitive, bulbospinal neurons in the RVLM. Second, microinjection of orexin A (6.35, 12.7 and 38.1 microM) into the RVLM, which was verified later by histological examination, caused a significant increase of mean arterial pressure (MAP) and a moderate increase of heart rate (HR) in awake rats. L-glutamate (33.3 mM) injected into the same sites, caused a larger increase in MAP, but a decrease in HR; whereas, saline injection was without significant effect. Results from this study suggest that orexin A, which may be released from the nerve fibers originating from the neurons in the lateral hypothalamus, acting on RVLM neurons in the medulla, increases sympathetic outflow targeted to the heart and blood vessels in awake animals.  相似文献   

14.
The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ~17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.  相似文献   

15.
Microinjection of 1.4 pmol TRH (0.5 ng; 50–150 nl) into both the preoptic suprachiasmatic nucleus (pos) and the A6800–7000 region of the medial preoptic nucleus (pom) produced increases in blood pressure and heart rate of 7% and 19%, respectively; heart rate responses in these two areas were higher than those occurring in other areas tested. TRH induced a significant increase in blood pressure and heart rate in the posterior hypothalamic nucleus (nhp) and increased heart rate only in the anterior (nha) and dorsomedial (ndm) hypothalamic nuclei. A small decrease in both blood pressure and heart rate resulted with TRH injections in the A7050–7400 region of the pom. No changes in respiratory rate or rectal temperature were observed at any site with this dose of TRH. Preliminary studies into the mechanism of the cardiovascular actions of TRH suggested that inhibition of the parasympathetic nerves to the heart make a partial contribution to the TRH-induced heart rate increase in the pos and that adrenal catecholamine release mediates the TRH response in the nhp. Neither methylatropine pretreatment nor adrenalectomy prevented the response to TRH injected into the nha, suggesting that activation of the cardiac sympathetic nerves may mediate TRH actions in this region. In the ndm, neither methylatropine nor adrenalectomy prevented the response to TRH; however, there was a tendency for the response to be less after methylatropine. Therefore, both inhibition of the parasympathetic and activation of the sympathetic nervous systems may contribute to the response observed, but no adrenal involvement could be demonstrated. Discrete injections of 0.8 nmol TRH produced increases in heart rate and blood pressure in all preoptic and hypothalamic nuclei tested with accompanying changes in respiratory rate and rectal temperature in some areas. Lateral cerebral ventricle injections of as little as 2.8 pmol TRH produced increases in blood pressure and heart rate; cardiovascular responses to higher doses (0.8–22 nmol) in the ventricle were often accompanied by arousal, piloerection, “wet dog” shakes and changes in respiratory rate and rectal temperature. Previous immunohistochemical demonstration of nerve cells and fibers in the preoptic-hypothalamic area and the present finding of specific sites responsive to low dose TRH injections (1.4 pmol) both support a physiological role for this peptide in central control of the cardiovascular system.  相似文献   

16.
We made unilateral chemical (10- or 50-nl microinjections; 4.7 mM kainic acid) or electrolytic (5-15 mA; 15 s) lesions in a region of the rostral ventrolateral medulla (VLM) caudal to the retrotrapezoid nucleus in 10 decerebrate, paralyzed, vagotomized, and servo-ventilated cats. The lesions were 3.0-4.2 mm lateral to the midline, within 2 mm caudal to the facial nucleus, and within 2.5 mm of the VLM surface. Four control injections (mock cerebrospinal fluid and fluorescent beads alone) produced small and inconsistent effects over 3-5 h. The predominant effect of the lesions was a significant decrease in baseline integrated phrenic nerve amplitude (PNA) (apnea in 2 cases), total respiratory cycle duration, and the response to increased CO2 (slope < 15% of control in 3 cases). The respiratory-related peak amplitude of the integrated sympathetic signal, blood pressure, and the sympathetic nerve activity response to CO2 were also decreased after the majority of lesions. Not all lesions produced all effects, and some lesions resulted in increased PNA and respiratory cycle duration. The lesioned region appears functionally to represent a caudal extension of the retrotrapezoid nucleus containing neurons necessary for normal baseline PNA and CO2 sensitivity. In addition, it contains neurons involved in the determination of resting respiratory frequency and normal sympathetic activity and blood pressure. The pattern of mixed responses among animals suggests that a heterogeneity of function is present within a relatively small VLM region.  相似文献   

17.
The rostral ventrolateral medulla (RVLM) plays an important role in the integration of cardiovascular functions. We examined the effect of asphyxia on cardiovascular responses, on sympathetic vertebral nerve activity (VNA) and nitric oxide (NO) formation in the RVLM, on hemodynamics, and on plasma concentrations of catecholamines, blood gas partial pressures and carbohydrate metabolites. Using 16 anesthetized cats we found that the systemic arterial pressure (SAP), VNA, NO formation and the release of plasma catecholamine components of norepinephrine and epinephrine were increased during asphyxia. The onset of NO production was significantly earlier than that of SAP and VNA. The venous partial pressure of O2 decreased, while the partial pressure of CO2 increased. Furthermore, metabolism of glucose and lactate increased, as did the blood concentrations of white and red blood cells, hemoglobin and platelets. Thus, asphyxia increased SAP, VNA and NO formation. It increased the plasma catecholamines, blood gases, carbohydrate metabolites and blood cells.  相似文献   

18.
Vav3 is a phosphorylation-dependent activator of Rho/Rac GTPases that has been implicated in hematopoietic, bone, cerebellar, and cardiovascular roles. Consistent with the latter function, Vav3-deficient mice develop hypertension, tachycardia, and renocardiovascular dysfunctions. The cause of those defects remains unknown as yet. Here, we show that Vav3 is expressed in GABAegic neurons of the ventrolateral medulla (VLM), a brainstem area that modulates respiratory rates and, via sympathetic efferents, a large number of physiological circuits controlling blood pressure. On Vav3 loss, GABAergic cells of the caudal VLM cannot innervate properly their postsynaptic targets in the rostral VLM, leading to reduced GABAergic transmission between these two areas. This results in an abnormal regulation of catecholamine blood levels and in improper control of blood pressure and respiration rates to GABAergic signals. By contrast, the reaction of the rostral VLM to excitatory signals is not impaired. Consistent with those observations, we also demonstrate that Vav3 plays important roles in axon branching and growth cone morphology in primary GABAergic cells. Our study discloses an essential and nonredundant role for this Vav family member in axon guidance events in brainstem neurons that control blood pressure and respiratory rates.  相似文献   

19.
The central nervous system plays an important role in the regulation of blood pressure via the sympathetic nervous system. Abnormal regulation of the sympathetic nerve activity is involved in the pathophysiology of hypertension. In particular, the brain stem, including the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM), is a key site that controls and maintains blood pressure via the sympathetic nervous system. Nitric oxide (NO) is a unique molecule that influences sympathetic nerve activity. Rho-kinase is a downstream effector of the small GTPase, Rho, and is implicated in various cellular functions. We developed a technique to transfer adenovirus vectors encoding endothelial nitric oxide synthase and dominant-negative Rho-kinase into the NTS or the RVLM of rats in vivo. We applied this technique to hypertensive rats to explore the physiological significance of NO and Rho-kinase.  相似文献   

20.
Li J 《Life sciences》2002,71(24):2833-2843
Contraction of skeletal muscle evokes increases in arterial blood pressure and heart rate. Some regions of the brainstem have been implicated for expression of the cardiovascular responses to muscle contraction. Previous studies have reported that static muscle contraction induced c-Fos protein in the nucleus of tractus solitarii (NTS), lateral reticular nucleus (LRN), lateral tegmental field (FTL), subretrofacial nucleus (SRF), A1 region and periaqueductal gray (PAG) of the brainstem. Furthermore, neuronal NADPH-diaphorase (NADPH-d), which is considered as a marker of neuronal nitric oxide synthase (nNOS), has been localized in those same regions. In this study, static muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots in anaesthetized cats. Distribution of c-Fos protein within neurons containing nNOS was evaluated by double labeling methods in order to determine if nNOS containing neurons in the brainstem were activated during muscle contraction. The results indicate that c-Fos protein colocalized with NADPH-d positive staining within the neurons of the SRF and PAG, but not within the NTS neurons. Distinct number of neurons with c-Fos protein was in close proximity to NADPH-d positive staining in the NTS, SRF, and PAG. Coexisting of c-Fos protein and NADPH-d positive staining was not observed in the LRN, FTL and A1 region. These findings demonstrate that nNOS containing neurons were activated by muscle contraction in the selective regions of the brainstem, and nNOS positive staining had close anatomic contacts with the neurons activated by contraction. This result provides neuroanatomic evidence suggesting that nitric oxide modulates the cardiovascular responses to muscle contraction within the NTS, SRF and PAG of the brainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号