首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants.  相似文献   

2.
Site-directed mutagenesis was employed to examine the role played by specific surface residues in the activity of cytochrome c peroxidase. The double charge, aspartic acid to lysine, point mutations were constructed at positions 37, 79, and 217 on the surface of cytochrome c peroxidase, sites purported to be within or proximal to the recognition site for cytochrome c in an electron-transfer productive complex formed by the two proteins. The resulting mutant peroxidases were examined for catalytic activity by steady-state measurements and binding affinity by two methods, fluorescence binding titration and cytochrome c affinity chromatography. The cloned peroxidases exhibit similar UV-visible spectra to the wild-type yeast protein, indicating that there are no major structural differences between the cloned peroxidases and the wild-type enzyme. The aspartic acid to lysine mutations at positions 79 and 217 exhibited similar turnover numbers and binding affinities to that seen for the "wild type-like" cloned peroxidase. The same change at position 37 caused more than a 10-fold decrease in both turnover of and binding affinity for cytochrome c. This empirical finding localizes a primary recognition region critical to the dynamic complex. Models from the literature proposing structures for the complex between peroxidase and cytochrome c are discussed in light of these findings.  相似文献   

3.
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c.  相似文献   

4.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

5.
The reaction of cytochrome c with trifluoromethylphenyl isocyanate was carried out under conditions which led to the modification of a small number of the 19 lysines. Extensive ion-exchange chromatography was used to separate and purify six different derivatives, each modified at a single lysine residue, lysines 8, 13, 27, 72, 79, and 100, respectively. The only modifications which affected the activity of cytochrome c with cytochrome oxidase (EC 1.9.3.1) were those of lysines immediately surrounding the heme crevice, lysines 13, 27, 72, and 79, and also lysine 8 at the top of the heme crevice. In each case, the modified cytochrome c had the same maximum velocity as that of native cytochrome c, but an increased Michaelis constant for high affinity phase of the reaction. This supports the hypothesis that the cytochrome oxidase reaction site is located in the heme crevice region, and the highly conserved lysine residues surrounding the heme crevice are important in the binding.  相似文献   

6.
The interaction of the Rhodospirillum rubrum cytochrome bc1 complex with R. rubrum cytochrome c2 and horse cytochrome c was studied using specific lysine modification and ionic strength dependence methods. In order to define the reaction domain on cytochrome c2, several fractions consisting of mixtures of singly labeled carboxydintrophenyl-cytochrome c2 derivatives were employed. Fraction A consisted of a mixture of derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2, while fractions C1, C2, C3, and C4 were mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The rate of the reaction of fraction A was found to be nearly the same as that of native cytochrome c2. However, the rate constants of fractions C1-C4 were found to be more than 20-fold smaller than that of native cytochrome c2. These results indicate that lysine residues surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. Since the same domain is involved in the reaction with the photosynthetic reaction center, cytochrome c2 must undergo some type of rotational or translational diffusion during electron transport in R. rubrum. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse cytochrome c also involves the heme crevice domain.  相似文献   

7.
The histidine-selective reagent diethyl pyrocarbonate and dye-sensitized photooxidation have been used to study the functional role of histidines in cytochrome c peroxidase. Of the 6 histidines in cytochrome c peroxidase, 5 are modified by diethyl pyrocarbonate at alkaline pH and 4 by photooxidation. The sixth histidine serves as the proximal heme ligand and is unavailable for reaction. Both modification reactions result in the loss of enzymic activity. However, photooxidized peroxidase retains its ability to react with H2O2 and to form a 1:1 cytochrome c peroxidase-cytochrome c complex. It is, therefore, concluded that the extra histidine modified by diethyl pyrocarbonate is the catalytic site distal histidine, His 52. In the presence of cytochrome c, no enzymic activity is lost by photooxidation and a single histidine, His 181, is protected from oxidative destruction. This finding provides strong support for the hypothetical model of the cytochrome c peroxidase-cytochrome c complex in which His 181 lies near the center of the intermolecular interface where it seems to provide an important link in the electron transfer process.  相似文献   

8.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.  相似文献   

9.
S Hahm  B Durham  F Millett 《Biochemistry》1992,31(13):3472-3477
The reactions of yeast cytochrome c peroxidase with horse cytochrome c derivatives labeled at specific lysine amino groups with (dicarboxybipyridine)(bisbipyridine)ruthenium(II) [Ru(II)] were studied by flash photolysis. All of the derivatives formed complexes with cytochrome c peroxidase compound I (CMPI) at low ionic strength (2 mM sodium phosphate, pH 7). Excitation of Ru(II) to Ru(II*) with a short laser flash resulted in electron transfer to the ferric heme group in cytochrome c, followed by electron transfer to the radical site in CMPI. This reaction was biphasic and the rate constants were independent of CMPI concentration, indicating that both phases represented intracomplex electron transfer from the cytochrome c heme to the radical site in CMPI. The rate constants of the fast phase were 5200, 19,000, 55,000, and 14,300 s-1 for the derivatives modified at lysines 13, 25, 27, and 72, respectively. The rate constants of the slow phase were 260, 520, 200, and 350 s-1 for the same derivatives. These results suggest that there are two binding orientations for cytochrome c on CMPI. The binding orientation responsible for the fast phase involves a geometry that supports rapid electron transfer, while that for the slow phase allows only slow electron transfer. Increasing the ionic strength up to 40 mM increased the rate constant of the slow phase and decreased that of the fast phase. A single intracomplex electron transfer phase with a rate constant of 2800 s-1 was observed for the lysine 72 derivative at this ionic strength. When a series of light flashes was used to titrate CMPI to CMPII, the reaction between the cytochrome c derivative and the Fe(IV) site in CMPII was observed. The rate constants for this reaction were 110, 250, 350, and 140 s-1 for the above derivatives measured in low ionic strength buffer.  相似文献   

10.
The site of the reaction between horse heart ferrocytochrome c and ferricyanide was investigated by measuring the reaction rate of cytochrome c derivatives specifically modified at single lysine residues to form trifluoroacetyl or trifluoromethylphenylcarbamyl amino groups. Cytochrome c derivatives singly modified at lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice had rate constants decreased from that of native cytochrome c by factors of 1.29, 2.03, 1.12, 1.35, 1.46, 1.29, and 1.19, respectively. Modification of a given lysine with the bulky trifluoromethylphenylcarbamyl group caused nearly the same decrease in reaction rate as modification with the trifluoroacetyl group, indicating that the effect was due to removal of an electrostatic interaction between the protonated lysine amino group and ferricyanide. Modification of lysines 22, 55, 99, and 100 at the right side, bottom, and back of cytochrome c had no effect on the reaction rate. These results indicate that the reaction site is located at the exposed edge of the heme and that the electrostatic interaction between ferricyanide and cytochrome c is dominated by the lysine amino groups surrounding the heme crevice, which include lysine 86, in addition to the ones listed above. We have used the specific lysine modification results to estimate the contribution of each lysine amino group to the electrostatic interaction and have developed a semiempirical relation for the total electrostatic interaction.  相似文献   

11.
The reduction of cytochrome c by succinate-cytochrome c reductase was studied at very low cytochrome c concentrations where the reaction between cytochrome c1 and cytochrome c was rate limiting. The rate constant for the reaction was found to be independent of ionic strength up to 0.1 M chloride, and to decrease rapidly at higher ionic strength, suggesting that the interaction between cytochrome c1 and cytochrome c was primarily electrostatic. The reaction rates of cytochrome c derivatives modified at single lysine residues to form trifluoroacetylated or trifluoromethylphenylcarbamylated cytochromes c were studied to determine the role of individual lysines in the reaction. None of the modifications affected the reaction at low ionic strength, but at higher ionic strength the reaction rate was substantially decreased by modification of those lysines surrounding the heme crevice, lysine-8, -13, -27, -72, and -79. Modification of lysine-22, -25, -55, -99, and -100 had no effect on the rate. These results indicate that the binding site on cytochrome c for cytochrome c1 overlaps considerably with that for cytochrome oxidase, suggesting that cytochrome c might undergo some type of rotational diffusion during the electron-transport process.  相似文献   

12.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

13.
The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic-strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.  相似文献   

14.
The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of cytochrome c on the methionine-80 side of the heme crevice.  相似文献   

15.
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.  相似文献   

16.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   

17.
The preparation, purification and characterization of the three singly, three doubly and one triply substituted derivatives of cytochrome c modified by pyridoxal phosphate (PLP) at lysine residues are reported. The PLP positions in PLP derivatives were determined by the amino acid analysis and sequence of PLP peptides. The results identified the lysine at position 86 in one of the singly substituted, lysine 79 in the other singly substituted and lysines 86 and 79 in the third doubly substituted cytochrome c derivatives. The area surrounding phenylalanine 82 forms the predominant PLP binding site on the cytochrome c molecule. The visible, CD and proton NMR spectra, the full intensity of the conformation-sensitive 695 nm band and the oxidation-reduction properties provide evidence to confirm the conclusion that singly and doubly substituted PLP cytochromes c retain the native conformation. The ability to restore both succinate and ascorbate/TMPD oxidation in cytochrome c-depleted mitochondria decreases in the order: native cytochrome c greater than PLP-Lys-79-cytochrome c greater than PLP-Lys-86-cytochrome c greater than PLP-Lys-79,86-cytochrome c greater than triply substituted derivative.  相似文献   

18.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1989,28(6):2568-2571
The reaction of Rhodobacter sphaeroides cytochrome c2 with the Rb. sphaeroides cytochrome bc1 complex was studied by using singly labeled cytochrome c2 derivatives. Cytochrome c2 was treated with chlorodinitrobenzoic acid to modify lysine amino groups to negatively charged carboxydinitrophenyllysines and separated into eight different fractions by ion-exchange chromatography on a Whatman SE 53 (sulfoxyethyl)cellulose column. Peptide mapping studies indicated that six of these fractions were modified at single lysine amino groups. Each of the derivatives had the same Vmax value as native cytochrome c2 in the steady-state reaction with the Rb. sphaeroides cytochrome bc1 complex. However, the Km values of the cytochrome c2 derivatives modified at lysines 10, 55, 95, 97, 99, and 106 were found to be larger than that of native cytochrome c2 by factors of 6, 2, 3, 32, 13, and 8, respectively. These results indicate that lysines located in the sequence 97-106 on the left side of the heme crevice have the greatest involvement in binding the cytochrome bc1 complex. The involvement of lysine 97 is especially significant because it is located in an extra loop comprising residues 89-98 that is not present in eukaryotic cytochrome c.  相似文献   

19.
Cytochrome oxidase is purified from rat liver and beef heart by affinity chromatography on a matrix of horse cytochrome c-Sepharose 4B. The success of this procedure, which employs a matrix previously found ineffective with beef or yeast oxidase, is attributed to thorough dispersion of the enzyme with nonionic detergent and a low density of cross-linking between the lysine residues of cytochrome c and the cyanogen bromide activated Sepharose. Beef heart oxidase is purified in one step from mitochondrial membranes solubilized with lauryl maltoside, yielding an enzyme of purity comparable to that obtained on a yeast cytochrome c matrix [Azzi, A., Bill, K., & Broger, C. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2447-2450]. Rat liver oxidase is prepared by hydroxyapatite and horse cytochrome c affinity chromatography in lauryl maltoside, yielding enzyme of high purity (12.5-13.5 nmol of heme a/mg of protein), high activity (TN = 270-400 s-1), and very low lipid content (1 mol of DPG and 1 mol of PI per mol of aa3). The activity of the enzyme is characterized by two kinetic phases, and electron transfer can be stimulated to maximal rates as high as 650 s-1 when supplemented with asolectin vesicles. The rat liver oxidase purified by this method does not contain the polypeptide designated as subunit III. Comparisons of the kinetic behavior of the enzyme in intact membranes, solubilized membranes, and the purified delipidated form reveal complex changes in kinetic parameters accompanying the changes in state and assay conditions, but do not support previous suggestions that subunit III is a critical factor in the binding of cytochrome c at the high-affinity site on oxidase or that cardiolipin is essential for the low-affinity interaction of cytochrome c. The purified rat liver oxidase retains the ability to exhibit respiratory control when reconstituted into phospholipid vesicles, providing definitive evidence that subunit III is not solely responsible for the ability of cytochrome oxidase to produce or respond to a membrane potential or proton gradient.  相似文献   

20.
The cytochrome c-cytochrome oxidase complex is formed when c reacts with cytochrome oxidase (Kuboyama et al. (1962) Biochem. Biophys. Res. Commun. 9, 534) and the cytochrome c1-cytochrome c complex is formed when c reacts with cytochrome c1 in the presence of the hinge protein (Kim, C.H. and King, T.E. (1981) Biochem. Biophys. Res. Commun. 101, 607). Both complexes are considered to be possible intermediates in electron transfer reaction between these cytochromes. Triply substituted modified cytochrome c by pyridoxal phosphate at lysine residues (Lys-79, 86 and one to be identified) abolishes both complex formations and electron transfer activity with succinate cytochrome c reductase or cytochrome oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号