首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a method based on information-theoretic distances for measuring the information transfer efficiency of voltage to impulse encoders. In response to light pulses, we simultaneously recorded the EPSP and spiking output of crayfish sustaining fibers. To measure the distance between analog EPSP responses, we developed a membrane noise model that accurately captures stimulus-induced nonstationarities. By comparing the EPSP and spike responses, we found encoding efficiencies on the order of 10–4, with interesting dynamics occurring during initial transients. A simple analog to point-process converter predicted the small information transfer efficiencies and dynamic properties we measured.  相似文献   

2.
Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons'' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.  相似文献   

3.
Faivre O  Juusola M 《PloS one》2008,3(5):e2173
Information capture by photoreceptors ultimately limits the quality of visual processing in the brain. Using conventional sharp microelectrodes, we studied how locust photoreceptors encode random (white-noise, WN) and naturalistic (1/f stimuli, NS) light patterns in vivo and how this coding changes with mean illumination and ambient temperature. We also examined the role of their plasma membrane in shaping voltage responses. We found that brightening or warming increase and accelerate voltage responses, but reduce noise, enabling photoreceptors to encode more information. For WN stimuli, this was accompanied by broadening of the linear frequency range. On the contrary, with NS the signaling took place within a constant bandwidth, possibly revealing a 'preference' for inputs with 1/f statistics. The faster signaling was caused by acceleration of the elementary phototransduction current--leading to bumps--and their distribution. The membrane linearly translated phototransduction currents into voltage responses without limiting the throughput of these messages. As the bumps reflected fast changes in membrane resistance, the data suggest that their shape is predominantly driven by fast changes in the light-gated conductance. On the other hand, the slower bump latency distribution is likely to represent slower enzymatic intracellular reactions. Furthermore, the Q(10)s of bump duration and latency distribution depended on light intensity. Altogether, this study suggests that biochemical constraints imposed upon signaling change continuously as locust photoreceptors adapt to environmental light and temperature conditions.  相似文献   

4.
Response variability is a fundamental issue in neural coding because it limits all information processing. The reliability of neuronal coding is quantified by various approaches in different studies. In most cases it is largely unclear to what extent the conclusions depend on the applied reliability measure, making a comparison across studies almost impossible. We demonstrate that different reliability measures can lead to very different conclusions even if applied to the same set of data: in particular, we applied information theoretical measures (Shannon information capacity and Kullback-Leibler divergence) as well as a discrimination measure derived from signal-detection theory to the responses of blowfly photoreceptors which represent a well established model system for sensory information processing. We stimulated the photoreceptors with white noise modulated light intensity fluctuations of different contrasts. Surprisingly, the signal-detection approach leads to a safe discrimination of the photoreceptor response even when the response signal-to-noise ratio (SNR) is well below unity whereas Shannon information capacity and also Kullback-Leibler divergence indicate a very low performance. Applying different measures, can, therefore, lead to very different interpretations concerning the system's coding performance. As a consequence of the lower sensitivity compared to the signal-detection approach, the information theoretical measures overestimate internal noise sources and underestimate the importance of photon shot noise. We stress that none of the used measures and, most likely no other measure alone, allows for an unbiased estimation of a neuron's coding properties. Therefore the applied measure needs to be selected with respect to the scientific question and the analyzed neuron's functional context.  相似文献   

5.
The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.  相似文献   

6.
This paper describes the instrumentation and operation of a photon counting system which was constructed to measure the delayed light emission from the algae Scenedesmus. The functioning of the system was illustrated by a plot which compared data of the recorded delayed light emission with data of the system noise over the first 20-μsec interval after extinction of a modulated laser beam. We believe that this paper shows the utility of photon counting as a satisfactory method of measuring biological light emission, especially a very rapid process such as the delayed light emission from photosynthetic organisms.  相似文献   

7.
Introduction and rationale: Stroke is a major cause of acquired cerebral disability among adults, frequently accompanied by depression, anxiety, cognitive impairment, disrupted sleep and fatigue. New ways of intervention to prevent these complications are therefore needed. The major circadian regulator, the suprachiasmatic nucleus, is mainly controlled by natural daylight, and the blue spectrum is considered the most powerful. During stroke rehabilitation, patients typically are mostly indoors and therefore not exposed to the natural daytime variation in light intensity. Furthermore, several rehabilitation hospitals may be exposed to powerful light in the blue spectrum, but at a time that is adversely related to their endogenous circadian phase, for example in the late evening instead of the daytime. Hypothesis: Naturalistic light that mimics the natural daytime spectrum variation will have a positive impact on the health of poststroke patients admitted to rehabilitation. We test specifically for improved sleep and less fatigue (questionnaires, polysomnography, Actiwatch), improved well-being (questionnaires), lessen anxiety and depression (questionnaires), improved cognition (tests), stabilizing of the autonomous nervous system (ECG/HR, blood pressure, temperature) and stabilizing of the diurnal biochemistry (blood markers). Study design: The study is a prospective parallel longitudinal randomized controlled study (quasi randomization). Stroke patients in need of rehabilitation will be included at the acute stroke unit and randomized to either the intervention unit (naturalistic lighting) or the control unit (CU) (standard lighting). The naturalistic light is installed in the entire IU (Cromaviso, Denmark). Conclusion: This study aims to elucidate the influence of naturalistic light on patients during long-term hospitalization in a real hospital setting. The hypotheses are based on preclinical research, as studies using naturalistic light have never been performed before. Investigating the effects of naturalistic light in a clinical setting is therefore much needed.  相似文献   

8.
At the layer of first visual synapses, information from photoreceptors is processed and transmitted towards the brain. In fly compound eye, output from photoreceptors (R1-R6) that share the same visual field is pooled and transmitted via histaminergic synapses to two classes of interneuron, large monopolar cells (LMCs) and amacrine cells (ACs). The interneurons also feed back to photoreceptor terminals via numerous ligand-gated synapses, yet the significance of these connections has remained a mystery. We investigated the role of feedback synapses by comparing intracellular responses of photoreceptors and LMCs in wild-type Drosophila and in synaptic mutants, to light and current pulses and to naturalistic light stimuli. The recordings were further subjected to rigorous statistical and information-theoretical analysis. We show that the feedback synapses form a negative feedback loop that controls the speed and amplitude of photoreceptor responses and hence the quality of the transmitted signals. These results highlight the benefits of feedback synapses for neural information processing, and suggest that similar coding strategies could be used in other nervous systems.  相似文献   

9.
We developed an optical probe for cross-polarized reflected light measurements and investigated optical signals associated with electrophysiological activation in isolated lobster nerves. The cross-polarized baseline light intensity (structural signal) and the amplitude of the transient response to stimulation (functional signal) measured in reflected mode were dependent on the orientation of the nerve axis relative to the polarization plane of incident light. The maximum structural signal and functional response amplitude were observed at 45 degrees , and the ratio of functional to structural signals was approximately constant across orientations. Functional responses were measured in single trials in both transmitted and reflected geometries and responses had similar waveforms. Both structural and functional signals were an order of magnitude smaller in reflected than in transmitted light measurements, but functional responses had similar signal/noise ratios. We propose a theoretical model based on geometrical optics that is consistent with experimental results. In the model, the cross-polarized structural signal results from light reflection from axonal fibers and the transient functional response arises from axonal swelling associated with neural activation. Polarization-sensitive reflected light measurements could greatly enhance in vivo imaging of neural activation since cross-polarized responses are much larger than scattering signals now employed for dynamic functional neuroimaging.  相似文献   

10.
Individual neurons often produce highly variable responses over nominally identical trials, reflecting a mixture of intrinsic ‘noise’ and systematic changes in the animal’s cognitive and behavioral state. Disentangling these sources of variability is of great scientific interest in its own right, but it is also increasingly inescapable as neuroscientists aspire to study more complex and naturalistic animal behaviors. In these settings, behavioral actions never repeat themselves exactly and may rarely do so even approximately. Thus, new statistical methods that extract reliable features of neural activity using few, if any, repeated trials are needed. Accurate statistical modeling in this severely trial-limited regime is challenging, but still possible if simplifying structure in neural data can be exploited. We review recent works that have identified different forms of simplifying structure — including shared gain modulations across neural subpopulations, temporal smoothness in neural firing rates, and correlations in responses across behavioral conditions — and exploited them to reveal novel insights into the trial-by-trial operation of neural circuits.  相似文献   

11.
When fluorescent indicators are used to measure intracellular ligands in single cells, the quality of the data is usually limited by quantum (shot) noise. For indicators which shift excitation or emission wavelengths upon ligand binding, a ratiometric method is usually employed. In choosing the spectral windows for excitation or collection of fluorescence, there is a trade-off between maximum sensitivity to ligand binding, and maximum collection of light. We show that there is a well-defined optimum choice of windows which minimizes the error caused by quantum noise in the estimated ligand concentration. An algorithm for determining these optimum windows is presented. As an example, we consider the measurement of intracellular calcium by indo-1 fluorescence emission ratio in cardiac myocytes. The optimum wavelength bands for collection of fluorescence are considerably wider than those commonly employed. The use of these windows in a pulsed-excitation time-resolved calcium measurement instrument resulted in improved signal to noise ratio of the calcium signal.  相似文献   

12.
Note onsets in music are acoustic landmarks providing auditory cues that underlie the perception of more complex phenomena such as beat, rhythm, and meter. For naturalistic ongoing sounds a detailed view on the neural representation of onset structure is hard to obtain, since, typically, stimulus-related EEG signatures are derived by averaging a high number of identical stimulus presentations. Here, we propose a novel multivariate regression-based method extracting onset-related brain responses from the ongoing EEG. We analyse EEG recordings of nine subjects who passively listened to stimuli from various sound categories encompassing simple tone sequences, full-length romantic piano pieces and natural (non-music) soundscapes. The regression approach reduces the 61-channel EEG to one time course optimally reflecting note onsets. The neural signatures derived by this procedure indeed resemble canonical onset-related ERPs, such as the N1-P2 complex. This EEG projection was then utilized to determine the Cortico-Acoustic Correlation (CACor), a measure of synchronization between EEG signal and stimulus. We demonstrate that a significant CACor (i) can be detected in an individual listener''s EEG of a single presentation of a full-length complex naturalistic music stimulus, and (ii) it co-varies with the stimuli’s average magnitudes of sharpness, spectral centroid, and rhythmic complexity. In particular, the subset of stimuli eliciting a strong CACor also produces strongly coordinated tension ratings obtained from an independent listener group in a separate behavioral experiment. Thus musical features that lead to a marked physiological reflection of tone onsets also contribute to perceived tension in music.  相似文献   

13.
Lipid droplets are the major organelle for intracellular storage of triglycerides and cholesterol esters. Various methods have been attempted for automated quantitation of fluorescently stained lipid droplets using either thresholding or watershed methods. We find that thresholding methods deal poorly with clusters of lipid droplets, whereas watershed methods require a smoothing step that must be optimized to remove image noise. We describe here a novel three-stage hybrid method for automated segmentation and quantitation of lipid droplets. In this method, objects are initially identified by thresholding. They are then tested for circularity to distinguish single lipid droplets from clusters. Clusters are subjected to a secondary watershed segmentation. We provide a characterization of this method in simulated images. Additionally, we apply this method to images of fixed cells containing stained lipid droplets and GFP-tagged proteins to provide a proof-of-principle that this method can be used for colocalization studies. The circularity measure can additionally prove useful for the identification of inappropriate segmentation in an automated way; for example, of non-cellular material. We will make the programs and source code available to the community under the Gnu Public License. We believe this technique will be of interest to cell biologists for light microscopic studies of lipid droplet biology.  相似文献   

14.
Response properties of short-type (R1-6) photoreceptors of the blowfly (Calliphora vicina) were investigated with intracellular recordings using repeated sequences of pseudorandomly modulated light contrast stimuli at adapting backgrounds covering 5 log intensity units. The resulting voltage responses were used to determine the effects of adaptational regulation on signal-to-noise ratios (SNR), signal induced noise, contrast gain, linearity and the dead time in phototransduction. In light adaptation the SNR of the photoreceptors improved more than 100-fold due to (a) increased photoreceptor voltage responses to a contrast stimulus and (b) reduction of voltage noise at high intensity backgrounds. In the frequency domain the SNR was attenuated in low frequencies with an increase in the middle and high frequency ranges. A pseudorandom contrast stimulus by itself did not produce any additional noise. The contrast gain of the photoreceptor frequency responses increased with mean illumination and the gain was best fitted with a model consisting of two second order and one double pole of first order. The coherence function (a normalized measure of linearity and SNR) of the frequency responses demonstrated that the photoreceptors responded linearly (from 1 to 150 Hz) to the contrast stimuli even under fairly dim conditions. The theoretically derived and the recorded phase functions were used to calculate phototransduction dead time, which decreased in light adaptation from approximately 5-2.5 ms. This analysis suggests that the ability of fly photoreceptors to maintain linear performance under dynamic stimulation conditions results from the high early gain followed by delayed compressive feed-back mechanisms.  相似文献   

15.
Besides the physical limits imposed on photon absorption, the coprocessing of visual information by the phototransduction cascade and photoreceptor membrane determines the fidelity of photoreceptor signaling. We investigated the response dynamics and signaling efficiency of Drosophila photoreceptors to natural-like fluctuating light contrast stimulation and intracellular current injection when the cells were adapted over a 4-log unit light intensity range at 25 degrees C. This dual stimulation allowed us to characterize how an increase in the mean light intensity causes the phototransduction cascade and photoreceptor membrane to produce larger, faster and increasingly accurate voltage responses to a given contrast. Using signal and noise analysis, this appears to be associated with an increased summation of smaller and faster elementary responses (i.e., bumps), whose latency distribution stays relatively unchanged at different mean light intensity levels. As the phototransduction cascade increases, the size and speed of the signals (light current) at higher adapting backgrounds and, in conjunction with the photoreceptor membrane, reduces the light-induced voltage noise, and the photoreceptor signal-to-noise ratio improves and extends to a higher bandwidth. Because the voltage responses to light contrasts are much slower than those evoked by current injection, the photoreceptor membrane does not limit the speed of the phototransduction cascade, but it does filter the associated high frequency noise. The photoreceptor information capacity increases with light adaptation and starts to saturate at approximately 200 bits/s as the speed of the chemical reactions inside a fixed number of transduction units, possibly microvilli, is approaching its maximum.  相似文献   

16.
The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.  相似文献   

17.
Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats’ responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats’ generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion.  相似文献   

18.
Akerman CJ  Smyth D  Thompson ID 《Neuron》2002,36(5):869-879
Visual experience before eye-opening is not usually thought to have any developmental significance. Here we show that naturalistic visual stimuli presented through unopened eyelids robustly activate neurons in the ferret dorsal lateral geniculate nucleus. Further, dark-rearing prior to natural eye-opening has striking effects upon geniculate physiology. Receptive field maps after dark-rearing show increased convergence of On- and Off-center responses, and neurons frequently respond to both bright and dark phases of drifting gratings. There is also increased selectivity for the orientation of the gratings. These abnormalities of On-Off segregation can be explained by the finding that the responses of immature On and Off cells to naturalistic stimuli are strongly anticorrelated.  相似文献   

19.
Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception.  相似文献   

20.
Shannon’s seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号