首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary In previous studies pineal astrocytes have been characterized immunohistochemically mainly by use of antisera to glial fibrillary acidic protein. Because of the recent demonstration of this protein in non-astrocytic cells the question of its specificity as an astrocytic marker has been raised. A possible alternative tool for characterizing pineal astrocytes is the J1-31 monoclonal antibody, which is directed against a 30 000 dalton astrocytic protein clearly distinguishable from glial fibrillary acidic protein. Immunofluorescence microscopy of this antibody in the pineal gland of rat and guinea-pig revealed a staining pattern similar to that obtained by glial acidic fibrillary protein antisera. In the rat, J1-31-immunoreactive cells and processes were concentrated in the transitional region between the superficial pineal gland and pineal stalk. Fibrillar J1-31-immunoreactive structures were seen in the most proximal part of the guinea-pig pineal gland. The J1-31 monoclonal antibody therefore appears to be a useful tool for the demonstration of pineal astrocytes; it avoids the specificity problems of glial fibrillary acidic protein immunohistochemistry.Supported by the Deutsche Forschungsgemeinschaft, grant Schr 283/2-1, NSERC (A 5021) and MSI Foundation  相似文献   

3.
4.
5.
6.
7.
Influence of high salt culture conditions on the expression of immediate early gene egr-1 in rat C6 glioma cells was investigated by measuring both Egr-1 mRNA and protein levels in the cells exposed to the medium containing high concentrations of NaCl. The exposure to high salt medium reduced Egr-1 mRNA and protein levels, while Egr-1 mRNA levels were not altered by the medium containing either sucrose or glycerol. Veratridine and monensin also reduced Egr-1 mRNA levels, similar in extent to that induced by high salt medium. Imaging analysis indicated that the exposure to high salt medium induced the elevation of Na+ levels within the cells. These results indicate that neither hyperosmotic pressure nor ionic strength of high salt medium contribute to the reduction of Egr-1 expression, and suggest that the elevation of intracellular Na+ concentration is closely associated with the down-regulation of egr-1 gene expression.  相似文献   

8.
9.
Summary A combined thin-section/freeze-fracture study was performed on the superficial pineal gland of the golden hamster, comparing the parenchymal and interstitial cells of this animal with those previously investigated in rats. In contrast to rats, no gap junctions and gap/tight junction combinations could be found between pineal parenchymal cells of the hamster. Furthermore, the interstitial cells of the hamster pineal gland were found to have large flat cytoplasmic processes, which abut over large areas equipped with tight junctions. In thin sections, profiles of interstitial cell processes were seen to surround groups of pinealocytes. Interstitial cells and their sheet-like, tight junction-sealed processes thus appear to delimit lobule-like compartments of the hamster pineal gland. Because the classification of the interstitial cells is uncertain, the expression of several markers characteristic of mature and immature astrocytes and astrocyte subpopulations has been investigated by indirect immunohistology. Many of the non-neuronal elements in the pineal gland are vimentin-positive glial cells, subpopulations of which express glial fibrillary acidic protein (GFA) and C1 antigen. The astroglial character of these cells is supported by the lack of expression of markers for neuronal, meningeal and endothelial cells. M1 antigen-positive cells have not been detected.Supported by a grant from Deutsche Forschungsgemeinschaft (Scha 185/9-2)  相似文献   

10.
11.
12.
13.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

14.
The pineal gland of the Mongolian gerbil consists of a superficial gland, stalk and deep pineal. The deep pineal differentiates postnatally. Histochemical studies of the superficial pineal gland indicate that it may be involved in the secretion of protein. Presumptive secretory material visualized by aldehyde fuchsin (AF) and chrome hematoxylin was observed along the course of blood vessels and among the pinealocytes. The distribution and texture of the AF-positive material was distinctive. It did not correspond to the pattern and texture of material stained with PAS, Sudan Black or acid orcein. Staining with AF was markedly reduced after incubation with trypsin, indicating that the AF-positive material is at least partially protein. The amount of stainable material increased with age. The AF-positive material was observed in what appeared to be interstitial or glial cells and processes, and in the processes of perivascular cells. Cells and fibrous processes with high non-specific esterase activity ("high-esterase cells") were observed among the pinealocytes and along the course of blood vessels. The distribution of the "high-esterase cells" and the morphology and texture of their esterase-containing processes were remarkably similar to the morphology and distribution of the material that stained with AF. It may be that the "high-esterase cells" contain AF-positive material. The "high-esterase cells" hydrolyzed both alpha-naphthyl acetate and alpha-naphthyl butyrate. The pinealocytes hydrolyzed only alpha-naphthyl acetate. The "high-esterase cells" appear to form a distinct class of cells within the superficial pineal gland. They are tentatively identified as a type of glial cell.  相似文献   

15.
16.
Summary Antigenic markers characteristic of astrocytes and their differentiative states (i.e., glial fibrillary acidic protein (GFAP), vimentin, and M1 and C1 antigens) were investigated in the pineal gland of mouse and rat using double immunolabeling techniques. In both species the socalled interstitial cells as characterized by TEM were shown to be astrocytes, since they expressed vimentin, but neither fibronectin (a marker for fibroblasts and endothelial cells) nor the neuron-specific L1 antigen or tetanus toxin receptors. Subpopulations of vimentin-positive pineal astrocytes were also GFAP- and C1- antigen-positive. M1- antigenpositive cells were not detected.It is concluded that a considerable proportion of interstitial cells in the pineal gland of rat and mouse are immature astrocytes which, in contrast to other parts of the central nervous system, persist into adulthood.Supported in part by Deutsche Forschungsgemeinschaft (Scha 185/9-4)S.-K. Huang was a recipient of a Humboldt Foundation fellowship.  相似文献   

17.
J Calvo  J Boya 《Acta anatomica》1985,123(3):172-177
The ultrastructure of the rat pineal stalk was described. The pineal stalk contained few pinealocytes, glial cells and numerous nerve fibers. The last were mostly non-myelinated axons, although a few myelinated ones were also observed. Glial cells showed many filaments, mostly in the processes which presented a longitudinal orientation. Other more lamellar processes were found enclosing the axons. The pineal stalk became wider as it reached the body of the gland. Ultrastructurally, this wide region resembled more the pineal body. Bundles of non-myelinated nerve fibers were seen around the pineal stalk.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号