首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In plants, cell signaling connects the environmental input to the intracellular responses in plants. Exogenous signals play an important role in cell metabolism leading to growth and defense responses. Some of these stimuli induce anatomical and physiological modifications that are generally modulated by gene expression. SERK belongs to a small family of genes that code for a transmembrane protein involved in signal transduction and that have been strongly associated with somatic embryogenesis and apomixis in a number of plant species. Recent studies corroborate its role in somatic embryogenesis and suggest a broader range of functions in plant response to biotic and abiotic stimuli. This mini-review aims to present new data on SERK and discuss its involvement in plant development as well as in response to environmental stress.Key words: SERK, fungus tolerance, environmental stress, brassinosteroids, SAR  相似文献   

2.
3.
Diverse roles for MADS box genes in Arabidopsis development.   总被引:17,自引:1,他引:16       下载免费PDF全文
Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.  相似文献   

4.
Expression of SERK family receptor-like protein kinase genes in rice   总被引:4,自引:0,他引:4  
Some SERK-family receptor-like protein kinase genes have been shown to confer embryonic competence to cells. In this study, we isolated two novel rice genes, OsSERK1 and OsSERK2, belonging to the SERK-family. OsSERK2 showed constitutive expression. The OsSERK1 promoter showed reporter gene activities in some specific tissues in a germinating seed, leaf and root, but not in a developing embryo. This promoter activity suggests that OsSERK1 may have roles in non-embryonic tissues rather than in the embryo.  相似文献   

5.
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.  相似文献   

6.
7.
8.
Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields.

This study uses CRISPR-Cas9 technology to investigate the functions of all five miR172 genes in Arabidopsis, finding that miRNA172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching and floral competence.  相似文献   

9.
10.
Lectins, lectin genes, and their role in plant defense.   总被引:28,自引:2,他引:28       下载免费PDF全文
  相似文献   

11.
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, ‐S20, ‐L27, ‐L28 and ‐L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, ‐L1, ‐L4, ‐L27 and ‐L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo–seedling development, during the greening process. PRPS1, ‐S17 and ‐L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.  相似文献   

12.
生长素响应因子与植物的生长发育   总被引:4,自引:0,他引:4  
刘振华  于延冲  向凤宁 《遗传》2011,33(12):1335-1346
生长素响应因子(Auxin response factor, ARF)作为一类调控生长素响应基因表达的转录因子, 是生长素研究的重要内容。它可与生长素响应基因启动子区域内的生长素响应元件结合, 促进或抑制基因的表达。文章介绍了植物体内ARF家族的分子生物学近年来的研究进展, 同时也讨论了ARF转录因子的结构、ARF基因的表达调控、ARF在植物生长发育及信号转导中的作用以及ARF对靶基因的调控机制等内容。植物ARF成员都有一定的同源性, 大多含有4个结构域, 在多种组织和器官中都有表达, 其表达受到转录及转录后调控, 并且在介导生长素与其它激素之间相互作用方面扮演重要角色。  相似文献   

13.
More than 100,000 publications demonstrate that AGC kinases are important regulators of growth, metabolism, proliferation, cell divison, survival and apoptosis in mammalian systems.1 Mutation and/or dysregulation of these kinases contribute to the pathogenesis of many human diseases, including cancer and diabetes. Although AGC kinases are also present in plants, little is known about their functions. We demonstrated that the AGC kinase OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1/AGC2-1) regulate important developmental processes and defense responses in plants. The summary of recent progress also demonstrates that we are only beginning to understand the role of this kinase pathway in plants.Key words: AGC kinases, reactive oxygen species, plant stress, plant microbe interaction, plant pathogen  相似文献   

14.
15.
植物防御反应的生化调控   总被引:2,自引:0,他引:2  
王瑞刚 《生物技术》2002,12(5):41-44
在与病原物长期相互影响的共进化过程中 ,植物逐渐形成了一系列复杂而行之有效的保护机制。自 19世纪末发现高等动物体存在抗原 -抗体免疫系统以来 ,曾推测植物在受到病原物侵染后也会产生类似于动物的免疫反应 ,然而在植物中寻找特异性抗体的尝试却以失败而告终。尽管如此 ,Chester发现遭受病原物初次侵染而存活下来的植物 ,再次受到侵染时抗病性增强[1] 。约 30年后 ,Ross再次描述了这种现象[2 ] ,并将这种现象称之为“全株获得性抗病性 (systemicac quiredresistance ,SAR)”。SAR通常在病原…  相似文献   

16.
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.  相似文献   

17.
叶绿体基因组编码许多参与光合作用和其他代谢过程的关键蛋白质,在叶绿体中合成的代谢物对于植物正常的生长发育至关重要。根对紫外线-B辐射敏感[Root-UVB (ultraviolet radiation B)-sensitive, RUS]蛋白属于叶绿体蛋白,由高度保守的DUF647结构域组成,在参与植物形态发生、物质运输和能量代谢等多种生命活动的调控中发挥作用。本文就近年来关于RUS家族在植物的胚胎发育、光形态建成、维生素B6稳态、生长素转运和花药发育等生长发育过程中的相关研究进行回顾和总结,为深入研究其在植物生长发育中的分子调控机制提供了参考。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号