首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LIM domains of WLIM1 define a new class of actin bundling modules   总被引:2,自引:0,他引:2  
Actin filament bundling, i.e. the formation of actin cables, is an important process that relies on proteins able to directly bind and cross-link subunits of adjacent actin filaments. Animal cysteine-rich proteins and their plant counterparts are two LIM domain-containing proteins that were recently suggested to define a new family of actin cytoskeleton regulators involved in actin filament bundling. We here identified the LIM domains as responsible for F-actin binding and bundling activities of the tobacco WLIM1. The deletion of one of the two LIM domains reduced significantly, but did not entirely abolish, the ability of WLIM1 to bind actin filaments. Individual LIM domains were found to interact directly with actin filaments, although with a reduced affinity compared with the native protein. Variants lacking the C-terminal or the inter-LIM domain were only weakly affected in their F-actin stabilizing and bundling activities and trigger the formation of thick cables containing tightly packed actin filaments as does the native protein. In contrast, the deletion of one of the two LIM domains negatively impacted both activities and resulted in the formation of thinner and wavier cables. In conclusion, we demonstrate that the LIM domains of WLIM1 are new autonomous actin binding and bundling modules that cooperate to confer WLIM1 high actin binding and bundling activities.  相似文献   

2.
An internal 1.4-kb Bst EII fragment was used to disrupt the benA gene and establish heterokaryons. The heterokaryons demonstrated that the molecular disruption of benA results in a recessive benA null mutation. Conidia from a heterokaryon swell and germinate but cannot undergo nuclear division and are thus inviable. A chimeric beta-tubulin gene was constructed with the benA promoter driving the tubC structural gene. This chimeric gene construction was placed on a plasmid containing a selectable marker for Aspergillus transformation and the gene disrupting fragment of benA. Integration of this plasmid at benA by the internal gene disrupting fragment of benA simultaneously disrupts the benA gene and replaces it with the chimeric beta-tubulin gene, rescuing the benA null generated by the integration. Strains generated by this procedure contain only tubC beta-tubulin for all beta-tubulin functions. Strains having only tubC beta-tubulin are viable and exhibit no detectable microtubule dysfunction though they are more sensitive than wild-type strains to the antimicrotubule drug benomyl. It is concluded that the two beta-tubulin genes of Aspergillus nidulans, though highly divergent, are interchangeable.  相似文献   

3.
Exportin-5 orthologues are functionally divergent among species   总被引:3,自引:0,他引:3       下载免费PDF全文
Exportin-5, an evolutionarily conserved nuclear export factor belonging to the importin-β family of proteins, is known to play a role in the nuclear export of small noncoding RNAs such as precursors of microRNA, viral minihelix RNA and a subset of tRNAs in mammalian cells. In this study, we show that the exportin-5 orthologues from different species such as human, fruit fly and yeast exhibit diverged functions. We found that Msn5p, a yeast exportin-5 orthologue, binds double-stranded RNAs and that it prefers a shorter 22 nt, double-stranded RNA to ~80 nt pre-miRNA, even though both of these RNAs share a similar terminal structure. Furthermore, we found that Drosophila exportin-5 binds pre-miRNAs and that amongst the exportin-5 orthologues tested, it shows the highest affinity for tRNAs. The knockdown of Drosophila exportin-5 in cultured cells decreased the amounts of tRNA as well as miRNA, whereas the knock down of human exportin-5 in cultured cells affected only miRNA but not tRNA levels. These results indicate that double-stranded RNA binding ability is an inherited functional characteristic of the exportin-5 orthologues and that Drosophila exportin-5 functions as an exporter of tRNAs as well as pre-miRNAs in the fruit fly that lacks the orthologous gene for exportin-t.  相似文献   

4.
Approximately 2% of mammalian genes encode proteases. Comparative genomics reveals that those involved in immunity and reproduction show the most interspecies diversity and evidence of positive selection during evolution. This is particularly true of granzymes, the cytotoxic proteases of natural killer cells and CD8+ T cells. There are 5 granzyme genes in humans and 10 in mice, and it is suggested that granzymes evolve to meet species-specific immune challenge through gene duplication and more subtle alterations to substrate specificity. We show that mouse and human granzyme B have distinct structural and functional characteristics. Specifically, mouse granzyme B is 30 times less cytotoxic than human granzyme B and does not require Bid for killing but regains cytotoxicity on engineering of its active site cleft. We also show that mouse granzyme A is considerably more cytotoxic than human granzyme A. These results demonstrate that even "orthologous" granzymes have species-specific functions, having evolved in distinct environments that pose different challenges.  相似文献   

5.
6.
The product of the VPS1 gene, Vps1p, is required for the sorting of soluble vacuolar proteins in the yeast Saccharomyces cerevisiae. We demonstrate here that Vps1p, which contains a consensus tripartite motif for guanine nucleotide binding, is capable of binding and hydrolyzing GTP. Vps1p is a member of a subfamily of large GTP-binding proteins whose members include the vertebrate Mx proteins, the yeast MGM1 protein, the Drosophila melanogaster shibire protein, and dynamin, a bovine brain protein that bundles microtubules in vitro. Disruption of microtubules did not affect the fidelity or kinetics of vacuolar protein sorting, indicating that Vps1p function is not dependent on microtubules. Based on mutational analyses, we propose a two-domain model for Vps1p function. When VPS1 was treated with hydroxylamine, half of all mutations isolated were found to be dominant negative with respect to vacuolar protein sorting. All of the dominant-negative mutations analyzed further mapped to the amino-terminal half of Vps1p and gave rise to full-length protein products. In contrast, recessive mutations gave rise to truncated or unstable protein products. Two large deletion mutations in VPS1 were created to further investigate Vps1p function. A mutant form of Vps1p lacking the carboxy-terminal half of the protein retained the capacity to bind GTP and did not interfere with sorting in a wild-type background. A mutant form of Vps1p lacking the entire GTP-binding domain interfered with vacuolar protein sorting in wild-type cells. We suggest that the amino-terminal domain of Vps1p provides a GTP-binding and hydrolyzing activity required for vacuolar protein sorting, and the carboxy-terminal domain mediates Vps1p association with an as yet unidentified component of the sorting apparatus.  相似文献   

7.
The highly conserved zinc fingers in retroviral nucleocapsid (NC) proteins have the general structure Cys-(X)2-Cys-(X)4-His-(X)4-Cys. Human immunodeficiency virus type 1 (HIV-1) contains two Zn2+ fingers, and mutants were constructed in which the native sequence of each Zn2+ finger was maintained but their positions in the NC protein were changed. Mutants had either two first-finger sequences (pNC1/1), two second-finger sequences (pNC2/2), or reversed first- and second-finger sequences (pNC2/1). Cells transfected with mutant or wild-type clones produced similar levels of Tat, Gag, Pol, and Env proteins, formed syncytia, and shed viruslike particles that were indistinguishable by electron microscopy. However, the pNC2/1 and pNC2/2 mutants were inefficient in packaging genomic RNA (less than 15% of wild-type levels), whereas the pNC1/1 mutant packaged approximately 70% of wild-type levels of RNA. No infectious virus could be detected with either the pNC2/1 or pNC2/2 mutants, whereas the pNC1/1 mutant appeared to sustain a low level of replication and reverted to a competent wild-type-like viral species after a 2- to 4-week lag period. The data strongly suggest that the two Zn2+ fingers of HIV-1 are not functionally equivalent and that the first Zn2+ finger in the Gag precursor plays a more prominent role in RNA selection and packaging. The data also indicate that both Zn2+ fingers in the mature NC protein play as yet unknown roles in viral assembly or the early stages of the viral infection process.  相似文献   

8.
9.
10.
Integrin beta subunits combine with specific sets of alpha subunits to form functional adhesion receptors. The structure and binding properties of integrins suggest the presence of domains controlling at least three major functions: subunit association, ligand binding, and cytoskeletal interactions. To more carefully define structure/function relationships, a cDNA construct consisting of the extracellular domain of the avian beta 1 subunit and the cytoplasmic and transmembrane domains of the human beta 3 subunit was prepared and expressed in murine 3T3 cells. The resulting chimeric beta 1/3 subunit formed heterodimers with alpha subunits from the beta 1 subfamily, could not interact with alpha IIb from the beta 3 subfamily, was targeted to focal contacts, and formed functional complexes within the focal contacts. A second cDNA construct was prepared that coded for an avian beta 1 subunit without a transmembrane or cytoplasmic domain. This subunit was not found in association with an accompanying alpha subunit, nor was it found expressed on the cell surface. Instead, it accumulated in vesicles within the cytoplasm and was eventually shed from the cell. The results from studies of the behavior of these two cDNA constructs demonstrate that the transmembrane and cytoplasmic domains play no role in alpha subunit selection, that the cytoplasmic domain of beta 3 is capable of functioning in the context of alpha subunits with which it is not normally paired, and that both integrin subunits must be membrane associated for normal assembly and transport to cell surface adhesive structures.  相似文献   

11.
HP1: a functionally multifaceted protein   总被引:5,自引:0,他引:5  
HP1 (heterochromatin protein 1) is a nonhistone chromosomal protein first discovered in Drosophila melanogaster because of its association with heterochromatin. Numerous studies have shown that such a protein plays a role in heterochromatin formation and gene silencing in many organisms, including fungi and animals. Cytogenetic and molecular studies, performed in Drosophila and other organisms, have revealed that HP1 associates with heterochromatin, telomeres and multiple euchromatic sites. There is increasing evidence that the different locations of HP1 are related to multiple different functions. In fact, recent work has shown that HP1 has a role not only in heterochromatin formation and gene silencing, but also in telomere stability and in positive regulation of gene expression.  相似文献   

12.
MOTIVATION: The rapid increase in the amount of protein sequence data has created a need for an automated identification of evolutionarily related subgroups from large datasets. The existing methods typically require a priori specification of the number of putative groups, which defines the resolution of the classification solution. RESULTS: We introduce a Bayesian model-based approach to simultaneous identification of evolutionary groups and conserved parts of the protein sequences. The model-based approach provides an intuitive and efficient way of determining the number of groups from the sequence data, in contrast to the ad hoc methods often exploited for similar purposes. Our model recognizes the areas in the sequences that are relevant for the clustering and regards other areas as noise. We have implemented the method using a fast stochastic optimization algorithm which yields a clustering associated with the estimated maximum posterior probability. The method has been shown to have high specificity and sensitivity in simulated and real clustering tasks. With real datasets the method also highlights the residues close to the active site. AVAILABILITY: Software 'kPax' is available at http://www.rni.helsinki.fi/jic/softa.html  相似文献   

13.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

14.
The human protein NEFA (DNA binding, EF-hand, Acidic region) has previously been isolated from a KM3 cell line and immunolocalized on the plasma membrane, in the cytoplasma, and in the culture medium. Sequence analysis of a cDNA clone encoding NEFA identified a hydrophilic domain, two EF-hands, and a leucine zipper at the C- terminus. These characters are shared with nucleobindin (Nuc). In this paper we have further characterized NEFA and probed its evolutionary origins. Circular dichroism (CD) spectra of recombinant NEFA indicated a helical content of 51% and showed that the EF-hands are capable of binding Ca2+. Experiments with recombinant NEFA and synthesized peptides revealed that the leucine zipper cannot form a homodimer. The leucine zipper may allow heterodimer formation of NEFA and an unknown protein. Phylogenetic analyses suggest that this protein is derived from a four-domain EF-hand ancestor with subsequent duplications and fusions. The leucine zipper and putative DNA-binding domains of NEFA have evolved secondarily from existing EF-hand sequences. These analyses provide insights into how complex proteins may originate and trace the precursor of NEFA to the common ancestor of eukaryotes.   相似文献   

15.
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.  相似文献   

16.
17.
Twinfilin is a ubiquitous and abundant actin monomer-binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K(D) = 0.05 microM) than ATP-G-actin (K(D) = 0.47 microM) under physiological ionic conditions and forms a relatively stable (k(off) = 1.8 s(-1)) complex with ADP-G-actin. Data from native PAGE and size exclusion chromatography coupled with light scattering suggest that twinfilin competes with ADF/cofilin for the high-affinity binding site on actin monomers, although at higher concentrations, twinfilin, cofilin, and actin may also form a ternary complex. By systematic deletion analysis, we show that the actin-binding activity is located entirely in the two ADF-H domains of twinfilin. Individually, these domains compete for the same binding site on actin, but the C-terminal ADF-H domain, which has >10-fold higher affinity for ADP-G-actin, is almost entirely responsible for the ability of twinfilin to increase the amount of monomeric actin in cosedimentation assays. Isolated ADF-H domains associate with ADP-G-actin with rapid second-order kinetics, whereas the association of wild-type twinfilin with G-actin exhibits kinetics consistent with a two-step binding process. These data suggest that the association with an actin monomer induces a first-order conformational change within the twinfilin molecule. On the basis of these results, we propose a kinetic model for the role of twinfilin in actin dynamics and its possible function in cells.  相似文献   

18.
19.
Ghosh S  Grove A 《Biochemistry》2006,45(6):1723-1733
Deinococcus radiodurans can reconstitute its genome from double-strand breaks, most likely due to unusually efficient DNA repair and recombination. Factors that may contribute to such processes include the histone-like protein HU. The D. radiodurans-encoded HU (DrHU), which binds preferentially to DNA recombination intermediates, contains a 47-amino acid extension preceding the fold characteristic of HU proteins. Here we use electrophoretic mobility shift assays and DNA footprinting to show that the DrHU N-terminal domain significantly modulates DNA binding. The truncated DrHU (deltaDrHU), comprising only the conserved DNA-binding fold, has a site size of approximately 11 bp in contrast to full-length DrHU which does not stably engage DNA shorter than approximately 50 bp. Unlike wild-type DrHU, deltaDrHU distinguishes between linear DNA and DNA with nicks or gaps. DeltaDrHU also binds preferentially to four-way junction (4WJ) DNA, with half-maximal saturation of 1.4 +/- 0.4 nM compared to 20 +/- 2 nM for 37 bp duplex DNA. However, in contrast to full-length protein which binds the junction arms, deltaDrHU primarily protects the junction crossover. Evidently, the DrHU N-terminus changes the mode of binding to both 4WJ DNA, duplex DNA, and DNA with nicks or gaps, thereby resulting in DrHU binding preferentially only to 4WJ structures. Combined with Western blots that confirm the presence of the extended form of DrHU in vivo, our data provide mechanistic insight into discrimination between 4WJ DNA and other distorted DNA constructs and suggest that an in vivo role of DrHU may be to stabilize DNA junctions.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is an integral membrane phosphoprotein that induces CD4 degradation in the endoplasmic reticulum and enhances virus release from the cell surface. CD4 degradation is specific, requires phosphorylation of Vpu, and involves the interaction between Vpu and the CD4 cytoplasmic domain. In contrast, regulation of virus release is less specific and not restricted to HIV-1 and may be mechanistically-distinct from CD4 degradation. We show here that a mutant of Vpu, Vpu35, lacking most of its cytoplasmic domain has residual biological activity for virus release but is unable to induce CD4 degradation. This finding suggests that the N terminus of Vpu encoding the transmembrane (TM) anchor represents an active domain important for the regulation of virus release but not CD4 degradation. To better define the functions of Vpu's TM anchor and cytoplasmic domain, we designed a mutant, VpuRD, containing a scrambled TM sequence with a conserved amino acid composition and alpha-helical structure. The resulting protein was integrated normally into membranes, was able to form homo-oligomers, and exhibited expression levels, protein stability, and subcellular localization similar to those of wild-type Vpu. Moreover, VpuRD was capable of binding to CD4 and to induce CD4 degradation with wild-type efficiency, confirming proper membrane topology and indicating that the alteration of the Vpu TM domain did not interfere with this function of Vpu. However, VpuRD was unable to enhance the release of virus particles from infected or transfected cells, and virus encoding VpuRD had replication characteristics in T cells indistinguishable from those of a Vpu-deficient HIV-1 isolate. Mutation of the phosphorylation sites in VpuRD resulted in a protein which was unable to perform either function of Vpu. The results of our experiments suggest that the two biological activities of Vpu operate via two distinct molecular mechanisms and involve two different structural domains of the Vpu protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号