首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage clamp technique was used to study macroscopic ionic currents in Rana esculenta oocytes. Depolarization steps led to the activation of a single type of outward current (I out) when contaminant potassium and calcium-dependent chloride currents were pharmacologically inhibited. The voltage threshold of I out activation was 10 mV and this current, which did not inactivate, presented a deactivation the time constant of 73±21 msec (n=26) corresponding to a membrane voltage of –60 mV. Its reversal potential (E rev) was dependent on the magnitude of the depolarization and also on pulse duration. These changes in E rev were thought to reflect intracellular ion depletion occurring during activation of the remaining outward current. Furthermore, the activation threshold of I out was clearly affected by modifications in extracellular and intracellular H+ concentrations. Indeed, intracellular alkalinization (evoked by external application of ammonium chloride) or extracellular acidification induced a rightward shift in the activation threshold while intracellular acidification (evoked by external application of sodium acetate) or extracellular alkalinization shifted this threshold toward a more negative value. Lastly, I out was dramatically reduced by divalent cations such as Cd2+, Ni2+ or Zn2+ and was strongly decreased by 4 Aminopyridine (4-AP), wellknown H+ current antagonists already described in many cell types. Therefore, it was suggested that the outward current was prominently carried by H+ ions, which may play a key role in the regulation of intracellular pH and subsequent pH dependent processes in Rana oocyte.  相似文献   

2.
The lateral leaflets of Desmodium motorium exhibit rhythmic upward and downward movements with a period in the minute range. Apoplasmic K+ and H+ activities were monitored in situ in the abaxial part of the pulvini with ion-selective microelectrodes. An extracellular electric potential was recorded simultaneously. The apoplasmic H+ activity of all pulvini exhibiting a regular rhythm of the extracellular electric potential oscillated with the same period between about 10 and 20 mM. The apoplasmic K+ activity was high when the membrane potential of the motor cells was depolarized (about 36 mV) and the cells were shrunken. In contrast, the apoplasmic K+ activity was low in the swollen state of the motor cells, when the membrane potential was hyperpolarized (about -136 mV). The volatile anesthetic enflurane suppressed reversibly the movement of the leaflets. The same treatment also arrested spontaneous oscillations in the apoplasmic K+ activity in the pulvinus. The apoplasmic K+ activity oscillated roughly in phase with the K+ activity between pH 6.6 and 6.0. Application of white light disturbed the rhythm and increased the extracellular pH. Our results indicate that the physiological mechanism that drives the lateral leaflet movements of Desmodium motorium is closely related to the osmotic motors mediating the leaf movements of Mimosa, Samanea and Phaseolus.Abbreviations Em membrane potential - Eex extracellular electric potential - Hex extracellular H+ activity - Kex extracellular K+ activity - Rex extracellular electrical resistance B. Antkowiak was supported by the Stiftung Volkswagenwerk.  相似文献   

3.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

4.
We investigated the relationship between intracellular Ca2+ and pH homeostasis in Madin-Darby canine kidney-focus (MDCK-F) cells, a cell line exhibiting spontaneous oscillations of intracellular Ca2+ concentration (Ca i 2+ ). Ca i 2+ and intracellular pH (pH i ) were measured with the fluorescent dyes Fura-2 and BCECF by means of video imaging techniques. Ca2+ influx from the extracellular space into the cell was determined with the Mn2+ quenching technique. Cells were superfused with HEPES-buffered solutions. Under control conditions (pH 7.2), spontaneous Ca i 2+ oscillations were observed in virtually all cells investigated. Successive alkalinization and acidification of the cytoplasm induced by an ammonia ion prepulse had no apparent effect on Ca i 2+ oscillations. On the contrary, changes of extracellular pH value strongly affected Ca i 2+ oscillations. Extracellular alkalinization to pH 7.6 completely suppressed oscillations, whereas extracellular acidification to pH 6.8 decreased their frequency by 40%. Under the same conditions, the respective pH i changes were less than 0. 1 pH units. However, experiments with the Mn2+ quenching technique revealed that extracellular alkalinization significantly reduced Ca2+ entry from the extracellular space. Large increases of Ca i 2+ triggered by the blocker of the cytoplasmic Ca2+-ATPase, thapsigargin, had no effect on pH i We conclude: intracellular Ca2+ homeostasis in MDCK-F cells is pH dependent. pH controls Ca2+ homeostasis mainly by effects on the level of Ca2+ entry across the plasma membrane. On the contrary, the intracellular pH value seems to be insensitive to rapid changes of Ca i 2+ .The project was supported by the Deutsche Forschungsgemeinschaft, SFB-176 (A6) and by the Jubilämusstiftung of the University of Würzburg.The authors gratefully acknowledge the valuable discussions with Drs. M.J. Berridge, M. Carew, I. Davidson, G. Law and B. Somasundraman. We are grateful to Applied Imaging for financial and technical support and to the Medical Research Council for financial support.  相似文献   

5.
Summary Microplasmodia ofPhysarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30mm K+, 4mm Ca++, 3mm Mg++, 18mm citrate buffer, pH 4.7, 22°C), the transmembrane potential differenceV m is around –100 mV and the membrane resistance about 0.25 m2.V m is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN, N 3 ),V m drops to about 0 mV. Under normal conditions,V m is very sensitive to external pH (pH o ), displaying an almost Nernstian slope at pH o =3. However, when measured during metabolic inhibition,V m shows no sensitivity to pH o over the range 3 to 6, only rising (about 50 mV/pH) at pH o =6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1mm of the sugar. Sugar-induced depolarization was insensitive to pH o . The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981,J. Membrane Biol. 63:165–190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.  相似文献   

6.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K i =2 m), including 8-anilino-1-naphthalein sulfonate (K i =25 m), unlabeled phthalate (K i =500 m), and chloride (K i =3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride.  相似文献   

7.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

8.
William J. Lucas 《Planta》1982,156(2):181-192
Electrophysiological measurements on internodal cells of the alga, Chara corallina Klein ex Willd., em. R.D.W., showed that the potential across the plasmalemma was sensitive to the level of exogenous HCO 3 - . In alkaline solutions (pH 8) the membrane potential depolarized by 50–75 mV when exogenous HCO 3 - was removed from the bathing medium. In the presence of exogenous HCO 3 - , the membrane potential rapidly hyperpolarized when the cell was given a brief dark treatment; in the light the potential was approx.-240 mV; after the cell had been in the dark for 3–6 min the potential was -330 to -350 mV. In the absence of exogenous HCO 3 - the potential only hyperpolarized slowly and to a much smaller extent when cells were placed in the dark. Upon re-illuminating the cell, the potential further hyperpolarized, transiently, and then rapidly depolarized back towards the light-adapted value. (These responses were only obtained when cells were not perturbed by microelectrode insertion into the vacuole.) Analysis of membrane potential and experiments with the extracellular vibrating electrode indicated a high level of correlation between the light- and dark-induced changes in membrane potential and extracellular currents. However, when experiments were conducted in HCO 3 - -free media that contained 1.0 mM phosphate buffer, pH 8, it was found that the dark-induced hyperpolarization of the membrane potential and the light-dependent extracellular currents could be maintained in the absence of exogenous HCO 3 - . These results are interpreted in terms of two basic models by which internodal cells of C. corallina may acquire exogenous HCO 3 - for photosynthesis. They are consistent with HCO 3 - being transported across the plasmalemma via an electrically neutral HCO 3 - –H+ cotransport system. The hyperpolarizing response is thought to be the consequence of the operation of an electrogenic H+-translocating ATPase that has a transport stoichiometry of 1 H+ per ATP hydrolyzed.Abbreviation CPW/B artificial Chara pond water containing exogenous bicarbonate  相似文献   

9.
Hubert Felle 《Planta》1988,176(2):248-255
In cells of Zea mays (root hairs, coleoptiles) and Riccia fluitans (rhizoids, thalli) intracellular Ca2+ and pH have been measured with double-barrelled microelectrodes. Free Ca2+ activities of 109–187 nM (Riccia rhizoids), 94–160 nM (Riccia thalli), 145–231 nM (Zea root hairs), 84–143 nM (Zea coleoptiles) were found, and therefore identified as cytoplasmic. In a few cases (Riccia rhizoids), free Ca2+ was in the lower millimolar range (2.3±0.8 mM). A change in external Ca2+ from 0.1 to 10 mM caused an initial and short transient increase in cytoplasmic free Ca2+ which finally levelled off at about 0.2 pCa unit below the control, whereas in the presence of cyanide the Ca2+ activity returned to the control level. It is suggested that this behaviour is indicative of active cellular Ca2+ regulation, and since it is energy-dependent, may involve a Ca2+-ATPase. Acidification of the cytoplasmic pH and alkalinization of the vacuolar pH lead to a simultaneous increase in cytoplasmic free Ca2+, while alkalinization of pHc decreased the Ca2+ activity. Since this is true for such remote organisms as Riccia and Zea, it may be concluded that regulation of cytoplasmic pH and free Ca2+ are interrelated. It is further concluded that double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.Symbols and abbreviations m, m membrane potential difference, changes thereof - PVC polyvinylchloride  相似文献   

10.
Gabi Lohse  Rainer Hedrich 《Planta》1992,188(2):206-214
Stomatal movement is controlled by external and internal signals such as light, phytohormones or cytoplasmic Ca2+. Using Vicia faba L., we have studied the dose-dependent effect of auxins on the modulation of stomatal opening, mediated through the activity of the plasma-membrane H+-ATPase. The patch-clamp technique was used to elucidate the electrical properties of the H+-ATPase as effected by growth regulators and seasonal changes. The solute composition of cytoplasmic and extracellular media was selected to record pump currents directly with high resolution. Proton currents through the ATPase were characterized by a voltage-dependent increase in amplitude, positive to the resting potential, reaching a plateau at more depolarized values. Upon changes in extracellular pH, the resting potential of the cell shifted with a non-Nernst potential response (±21 mV), indicating the contribution of a depolarizing ionic conductance other than protons to the permeability of the plasma membrane. The use of selective inhibitors enabled us to identify the currents superimposing the H+-pump as carried by Ca2+. Auxinstimulation of this electroenzyme resulted in a rise in the outwardly directed H+ current and membrane hyperpolarization, indicating that modulation of the ATPase by the hormone may precede salt accumulation as well as volume and turgor increase. Annual cycles in pump activity (1.5–3.8 μA · cm-2) were expressed by a minimum in pump current during January and February. Resting potentials of up to -260 mV and plasmamembrane surface area, on the other hand, did not exhibit seasonal changes. The pump activity per unit surface area was approximately 2- to 3-fold higher in guard cells than in mesophyll cells and thus correlates with their physiological demands.  相似文献   

11.
Ecdysteroids play an important role in the larval moulting process of insects. Ecdysone-induced stimulation causes specific puffs in polytene chromosomes of salivary gland cells resulting in nuclear swelling. During this process, changes of intracellular ion composition are thought to act as an early regulatory mechanism of gene activation. By use of video-imaging analysis and electrophysiological techniques, we examined ecdysone-induced nuclear swelling in Drosophila salivary glands in situ and its dependence on pH and calcium. Isolated glands of the third larval stage were superfused with a solution mimicking the haemolymph. Addition of 5×10–6 mol/l 20-OH-ecdysone led, after a lag period of 50 min, to a sustained Ca2+-dependent increase of nuclear volume by 23.0±2.3%. Amiloride, a blocker of plasma membrane Na+/H+ exchange, prevented 20-OH-ecdysone-induced nuclear swelling. Decreasing pH in the superfusate from 7.15 to 6.8 led to nuclear shrinkage by 16.9±3.9%. Measurments of pH in salivary gland cells with ion-sensitive microelectrodes disclosed an alkalinization of 0.23±0.05 pH units after stimulation with 20-OH-ecdysone. We postulate that 20-OH-ecdysone activates the amilorde-sensitive plasma membrane Na+/H+ exchanger. This leads to intracellular alkalinization and concomitant decondensation of the nuclear chromatin visible as nuclear swelling. Thus, cell alkalinization could be a potentially important stimulatory mechanism in mediating ecdysteroid-induced activation of the cell nucleus.  相似文献   

12.
Leaflet movements in Samanea saman (Jacq.) Merrill are driven by fluxes of K+, anions, and water through membranes of motor cells in the pulvinus (R.L. Satter et al., 1974, J. Gen. Physiol. 64, 413–430). Extensor cells take up K+ and swell in white light (WL) while flexor cells take up K+ and swell in darkness (D). Excised strips of extensor and flexor motor tissue acidify their bathing medium under conditions that normally promote increase in K+ in the intact tissue, and alkalize the medium under conditions that normally induce decrease in K+ (A. Iglesias and R.L. Satter, 1983, Plant Physiol. 72, 564). To obtain information on pH changes in the whole pulvinus, we measured effects of light on pH of the apoplast, using liquid membrane microelectrodes sensitive to H+. We report the following: (1) The pH of the extensor apoplast was higher than that of the flexor apoplast in WL and in D (pH gradient of 1.0 units in WL and 2.0 units in D). Apoplastic pH might affect K+ transport through the plasma membranes of Samanea motor cells, since the conductance, gating, and selectivity of ionic channels in other systems depend upon external pH. (2) Extensor cells acidified and flexor cells alkalized their environment in response to irradiation with WL, while the reverse changes occurred in response to D. These results are consistent with the results of Iglesias and Satter (1983), and support the physiological relevance of data obtained with excised tissue. (3) The pH changes in response to irradiation with red light were similar to those obtained with D; also, the pH changes in response to blue light were similar to those obtained with WL. The pulvinus closed in red light as in darkness and opened in WL, but failed to open in blue light. The advantages and limitations of apoplastic pH measurements for assaying H+ transport are discussed.Abbreviations BL blue light - D darkness - RL red light - WL white light  相似文献   

13.
The initial response of coleoptile cells to growth hormones and light is a rapid change in plasma-membrane polarization. We have isolated protoplasts from the cortex of maize (Zea mays L.) coleoptiles to study the electrical properties of their plasma membrane by the patch-clamp techniqueUsing the whole-cell configuration and cell-free membrane patches we could identify an H+-ATPase, hyperpolarizing the membrane potential often more negative than -150 mV, and a voltage-dependent, inward-rectifying K+ channel (unit conductance 5–7 pS) as the major membrane conductan-ces Potassium currents through this channel named CKC1in (for Coleoptile K + Channel inward rectifier) were elicited upon voltage steps negative to -80 mV, characterized by a half-activation potential of -112 mV. The kinetics of activation, well described by a double-exponential process, were strongly dependent on the degree of hyperpolarization and the cytoplasmic Ca2+ level. Whereas at nanomolar Ca2+ concentrations K+ currents increased with a t1/2=16 ms (at -180 mV), higher calcium levels slowed the activation process about fourto fivefoldUpon changes in the extracellular K+ concentration the reversal potential of the K+ channel followed the Nernst potential for potassium with a 56-mV shift for a tenfold increaseThe absence of a measurable conductance for Na+, Rb+, Cs+ and a permeability ratio PNH 4 + /PK+ around 0.25 underlines the high selectivity of CKC1in for K+In contrast to Cs+, which at submillimolar concentration blocks the channel in a voltage-dependent manner, Rb+, often used as a tracer for K+, does not permeate this type of K+ channelThe lack of Rb+ permeability is unique with respect to other K+ transporters. Therefore, future molecular analysis of CKC1in, considered as a unique variation of plant inward rectifiers, might help to understand the permeation properties of K+ channels in general.Abbreviations CKC1in Coleoptile K + Channel inward rectifier - U membrane voltage - Iss steady-state currents - Itail tail currents Experiments were conducted in the laboratory of F.G. during the stay of RHas a guest professor sponsored by Special Project RAISA, subproject N2.1, paper N2155.  相似文献   

14.
Elicitor-induced cytoplasmic pH changes of tobacco (Nicotiana tabacum L. cv. Xanthi) cells grown in suspension cultures were explored under a variety of conditions by using a flexible technique based on the distribution of [14C] benzoic acid between the intracellular and extracellular compartments. Comparison of data obtained by this technique and by 31P-nuclear magnetic resonance spectrometry qualifies the benzoic acid distribution method as a convenient and reliable way to probe cytoplasmic pH variations. Various elicitors shown to induce several defense-related responses in tobacco cells, namely oligogalacturonides of degree of polymerization 7–20, pectolyase from Aspergillus japonicus, Phytophthora megasperma crude elicitors and purified cryptogein, triggered cytoplasmic acidifications differing in intensity and kinetics according to the signal molecule. In contrast, no changes in cytoplasmic protons and external pH were observed in cells treated with short galacturonide oligomers, or with soybean-specific hepta -glucoside from P. megasperma, which are devoid of elicitor activity in tobacco cells. The oligogalacturonide-induced cytoplasmic acidification was inhibited by two structurally unrelated protein kinase inhibitors, staurosporine and 6-dimethylaminopurine, which both reduced the external alkalinization response to the elicitor. The protein phosphatase inhibitor calyculin A alone behaved as an elicitormimicking molecule in triggering cytoplasmic acidification, again associated with extracellular alkalinization. These results indicate that the increase in the cytoplasmic concentration of protons may be considered as a common early intracellular response of tobacco cells to elicitors, associated with the extracellular alkalinization response and controlled by protein phosphorylation.Abbreviations BA(H) benzoic acid (protonated form) - 6-DMAP 6-dimethylaminopurine - DP degree of polymerization - Mes 2-(N-morpholino)ethanesulfonic acid - OG oligogalacturonide - pHc cytoplasmic pH - 31P-NMR nuclear magnetic resonance spectroscopy of 31P atoms The authors thank P. Albersheim (CCRC, Athens, Georgia, USA) for providing the purified oligogalacturonides and the hepta -glucoside and P. Ricci (INRA, Antibes, France) for providing the purified cryptogein.  相似文献   

15.
During resorption of mineralized tissues, osteoclasts are exposed to marked changes in the concentration of extracellular Ca2+ and H+. We examined the effects of these cations on two types of K+ currents previously described in these cells. Whole-cell patch clamp recordings of membrane currents were made from osteoclasts freshly isolated from neonatal rats. In control saline (1 mm Ca2+, pH 7.4), the voltage-gated, outwardly rectifying K+ current activates at approximately 45 mV and the conductance is half-maximally activated at –29 mV (V 0.5). Increasing [Ca2+]out rapidly and reversibly shifted the current-voltage (I–V) relation to more positive potentials. Current at –29 mV decreased to 28 and 9% of control current at 5 and 10 mm [Ca2+]out, respectively. This effect of elevating [Ca2+]out was due to a positive shift of the K+ channel voltage activation range. Zn2+ or Ni2+ (5 to 500 m) also shifted the I–V relation to more positive potentials and had additional effects consistent with blockade of the K+ channel. Based on the extent to which these divalent cations affected the voltage activation range of the outwardly rectifying K+ current, the potency sequence was Zn2+ > Ni2+ > Ca2+. Lowering or raising extracellular pH also caused shifts of the voltage activation range to more positive or negative potentials, respectively. In contrast to their effects on the outwardly rectifying K+ current, changes in the concentration of extracellular H+ or Ca2+ did not shift the voltage activation range of the inwardly rectifying K+ current. These findings are consistent with Ca2+ and other cations affecting voltage-dependent gating of the osteoclast outwardly rectifying K+ channel through changes in surface charge.This work was supported by The Arthritis Society and the Medical Research Council of Canada. S.M.S. is supported by a Scientist Award and S.J.D. by a Development Grant from the Medical Research Council.  相似文献   

16.
The intracellular pH of the halotolerant green algae Dunaliella tertiolecta, was determined by the distribution of 5,5-dimethyl-2(14C)-oxalolidine-2,5-dione (DMO) between the cell and the surrounding medium. 5,5-dimethyl-2(14C)oxalolidine-2,4-dione was not metabolized by the algal cells. The intracellular pH of Dunaliella tertiolecta was 6.8 in the dark and 7.4 in the light. During a salt stress, after two hours, the intracellular pH was increased by 0.2 pH units in both light and dark. The salt stressed cells maintained a constant pH of about 7.5 over the pH range of 6.5 to 8.5. Because of the relatively low permeability coefficient of the plasma membrane for DMO, this technique does not permit rapid pH determinations during the induction period after a salt stress. The magnitude of the salt induced pH changes measured 2 h after the salt stress implies a minor importance of this alkalization in this time range, but does not exclude a larger importance of pH changes for osmoregulation during the induction period.Abbreviations Chl chlorophyll - DMO 5,5-dimethyl-2(14C)oxalolidine-2,4-dione - PCV packed cell volume - SDS sodium dodecyl sulfate  相似文献   

17.
This study investigates the reverse mode of the Na+/glucose cotransporter (SGLT1). In giant excised inside-out membrane patches from Xenopus laevis oocytes expressing rabbit SGLT1, application of α-methyl-D-glucopyranoside (αMDG) to the cytoplasmic solution induced an outward current from cytosolic to external membrane surface. The outward current was Na+- and sugar-dependent, and was blocked by phlorizin, a specific inhibitor of SGLT1. The current-voltage relationship saturated at positive membrane voltages (30–50 mV), and approached zero at −150 mV. The half-maximal concentration for αMDG-evoked outward current (K0.5αMDG) was 35 mM (at 0 mV). In comparison, K0.5αMDG for forward sugar transport was 0.15 mM (at 0 mV). K0.5Na was similar for forward and reverse transport (≈35 mM at 0 mV). Specificity of SGLT1 for reverse transport was: αMDG (1.0) > D-galactose (0.84) > 3-O-methyl-glucose (0.55) > D-glucose (0.38), whereas for forward transport, specificity was: αMDG ≈ D-glucose ≈ D-galactose > 3-O-methyl-glucose. Thus there is an asymmetry in sugar kinetics and specificity between forward and reverse modes. Computer simulations showed that a 6-state kinetic model for SGLT1 can account for Na+/sugar cotransport and its voltage dependence in both the forward and reverse modes at saturating sodium concentrations. Our data indicate that under physiological conditions, the transporter is poised to accumulate sugar efficiently in the enterocyte.  相似文献   

18.
Chlorella sorokiniana strain 211-40c, a symbiotic Chlorella isolated from a freshwater sponge, excreted between 3% and 5% of assimilated 14CO2 as glucose in the light, with a pH optimum around 5. This percentage increased when the illuminance was lowered (to 15% at 20 lx). Release of [14C]glucose continued in the dark and could be inhibited by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Net efflux of glucose occurred even at a concentration ratio of extracellular/intracellular glucose of 4. This, together with the sensitivity to FCCP, is taken as evidence for active transport. Exogenous [14C]glucose was taken up by the cells under conditions of net glucose efflux, showing uptake and excretion to take place simultaneously.Abbreviations FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - p.c. packed cells  相似文献   

19.
The effects of ambient O2 partial pressure and CO2 partial pressure on the intensity of rainbow trout (Oncorhynchus mykiss) red blood cell -adrenergic Na+/H+ exchange were investigated. This was accomplished in vitro by continuously monitoring whole blood extracellular pH, partial pressures of O2 and CO2 and by measuring red blood cell water content and Na+ concentration before and 30 min after the addition of a catecholamine mixture (final nominal concentrations: 250 nmol·l-1 adrenaline and 20 nmol·l-1 noradrenaline). The experiments were performed under six different initial conditions combining two ambient partial pressures of CO2 (1.50 and 6.75 torr) and three ambient partial pressures of O2 (15, 30 and 150 torr). The activation of red blood cell Na+/H+ exchange (as indicated by marked reductions of whole blood pH) was followed by transient reductions in blood partial pressures of CO2 and O2 (2 min) resulting from the shift of the CO2/HCO3 - equilibrium within the cell and the subsequent binding of O2 to the haemoglobin. The initial reduction in blood CO2 partial pressure was followed by a rise reflecting the titration of plasma HCO3 - by extruded H+. At low partial pressure of CO2 (1.50 torr) there was a pronounced stimulatory effect of hypoxia on the initial intensity of the extracellular acidification (5 min), whereas at high CO2 partial pressure (6.75 torr) hypoxia actually lowered the extent of the initial acidification. In all cases, Na+/H+ exchange activation was accompanied by increases in cell water content and red blood cell Na+ levles when measured 30 min after addition of catecholamines. Both hypercapnia and hypoxia increased the magnitude of these changes although the largest changes in cell water content and Na+ levels were observed under hypercapnic conditions. Thus, the long-term activity (as determined by measuring cell water and Na+ levels) of the Na+/H+ exchanger was enhanced both by hypercapnia and hypoxia regardless of the initial CO2 partial pressure. The initial activity (5 min), on the other hand, although stimulated by hypercapnia was influenced by hypoxia in opposing directions depending upon the initial CO2 partial pressure of the blood.Abbreviations RBC red blood cell(s) - Hb haemoglobin - pHe extracellular pH - P bCO2 blood partial pressure of CO2 - P bO2 blood partial pressure of O2  相似文献   

20.
Summary In goldfish intestine chloride was substituted by large inorganic anions (gluconate or glucuronate) either mucosally, serosally or bilaterally. Changes in intracellular activities of chloride (a i Cl), sodium (a i Na+) and potassium (a i K+), pHi, relative volume, membrane and transepithelial potentials, transepithelial resistance and voltage divider ratio were measured. Control values were:a i Cl=35 meq/liter, a i Na+=11 meq/liter and a i K+=95 meq/liter. During bilateral substitution the latter two did not change while a i Cl dropped to virtually zero.Mucosal membrane potentials (ms) were: control,-53 mV; serosal substitution,-51 mV; bilateral substitution,-66 mV; while during mucosal substitution a transient depolarization occurred and the final steady state ms was-66 mV.During control and bilateral substitution the transepithelial potentials (ms) did not differ from zero. During unilateral substitutions ms was small, in the order of magnitude of the errors in the liquid junction potentials near the measuring salt bridges.During bilateral substitution pH i increased 0.4 pH units. Cellular volume decreased during mucosal substitution to 88% in 40 min; after serosal substitution it transiently increased, but the new steady-state value was not significantly above its control value.Three minutes after mucosal substitution ana i Cl of approx. 10 meq/liter was measured.Chemical concentrations of Na, K and Cl were determined under control conditions and bilateral substitution. Cl concentrations were also measured as a function of time after unilateral substitutions.The data indicate an electrically silent chloride influx mechanism in the brush border membrane and an electrodiffusional chloride efflux in the basolateral membrane. A substantial bicarbonate permeability is present in the basolateral membrane. The results are in agreement with the observed changes in membrane resistances, volume changes and pH changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号