首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two-to threefold) and secretion (1.8-to 2.8-fold) of VEGF reaching maximal levels between 4–8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma.  相似文献   

2.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

3.
Endothelin-1 (ET-1) is a vasoactive peptide that modulates bone metabolism via regulatory effects on osteoblasts, chondrocytes, and osteoclasts. While ET-1 may circulate in the blood stream, tissue-specific expression of this peptide is more physiologically relevant. In the present study we measured ET-1 synthesis in sections of fetal rat calvaria (FRC) and in cultured FRC osteoblasts. Regulation of ET-1 synthesis in FRC osteoblasts by bone morphogenetic protein-7 (BMP-7) and transforming growth factor-beta1 (TGF-beta1) also was examined. Immunohistochemical analysis revealed ET-1 staining in calvarial osteoblasts, endothelial cells, and osteocytes. ET-1 mRNA expression was detected in cultured FRC cells and ET-1 peptide was present in conditioned media. During long-term culture of FRC cells (26 days) ET-1 peptide production rose sharply and peaked during the time of cellular proliferation (Days 0-3) then returned to baseline levels by Day 18, when mineralized nodules were forming. Treatment of FRC cells with BMP-7 enhanced ET-1 levels by three-fold on Day 3 and enhanced nodule formation by 15-fold on Day 26. To determine whether ET-1 was involved in an autocrine manner in BMP-7-induced nodule formation, cells were cultured in the presence of BMP-7 and BQ-123, an ET(A) receptor antagonist. BQ-123 had no effect on nodule formation in control or BMP-7-treated cells, indicating that osteoblast-derived ET-1 regulates other cell types in vivo during the bone formation process.  相似文献   

4.
Endothelin-1 (ET-1) pathophysiologic actions are mediated via binding with two receptor subtypes, ET(A) and ET(B). Release of ET-1 from endocardial endothelial cells and cardiac myocytes can modulate heart tissue necrosis and alterations. This study investigates the remodeling processes in Sprague-Dawley rats of myocardial infarction (MI) induced by ligating the left anterior descending coronary artery. Histological studies were done on cell type distribution using cell specific markers and Western blot analysis to localize ET-1 receptor subtypes and assess their expression post-MI. In addition, the binding kinetics of ET-1 with its receptors in heart perfusion, inlet via the aortic lumen and effluent outlet via the right atrium, between two animal model-subgroups were done: (1) sham-operated, and sham-operated-CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate)-treated; and (2) MI-operated, and MI-operated-CHAPS-treated. Effluent ET-1 concentration was plotted vs. time using a physical model for 1:1 ligand-receptor binding at coronary endothelium and myocytes. First order impulse function was used to calculate the affinity constants. In MI hearts, fluorescence activity increased for ET(A) vs. ET(B) across areas of the muscle compared to normal hearts. Western blotting showed upregulation of ET(A) and ET(B) receptors in MI compared with normal hearts. Results of ET-1 binding affinity post-MI indicated drastic reduction in spite the upregulation of ET(B) on coronary endothelium. Furthermore, substantial affinity increase was observed between ET-1 binding with ET(A) at the myocyte site. These findings stipulate that during 1 month post-MI some biochemical and hormonal effects could alter ET-1 receptor subtype(s) regulation and pharmacodynamics thus predisposing to cardiac hypertrophy and mitogenesis.  相似文献   

5.
The contrasting pattern of cardiac inotropy induced by human peptide endothelin-1 (ET-1) has not been satisfactorily explained. It is not clear whether ET-1 is primarily responsible for increased myocardial ET-1 expression and release with resultant inotropic effects, or for the induction of myocardial hypertrophy and heart failure. There are at least two subtypes of endothelin receptors (ET(A) and ET(B)) and the inotropic effects of ET-1 differ depending on the receptor involved. Along with some other groups, we reported significant subtype-ET(B) endothelin receptor down-regulation in human cardiac cells preincubated with endothelin agonists (Drímal et al. 1999, 2000). The present study was therefore designed to clarify the subtype-selective mechanisms underlying the inotropic response to ET-1 and to its ET(B)-selective fragment (8-21)ET-1 in the isolated rat heart. The hearts were subjected to (1-21)ET-1 and to (8-21)ET-1, or to 30 min of stop-flow ischemia followed by 40 min of reperfusion, both before and after selective blockade of endothelin receptors.The present study revealed that both peptides, ET-1 and its (8-21)ET-1 fragment, significantly reduced coronary blood flow in nmolar and higher concentrations. The concomitant negative inotropy and chronotropy were marked after ET-1, while the infusion of the ET-1(8-21) fragment produced a slight but significant positive inotropic effect. Among the four endothelin antagonists tested in continuous infusion only the non-selective PD145065 and ET(B1/B2) selective BQ788 (in molar concentrations) slightly reduced the early contractile dysfunction of the heart induced by ischemia, whereas ET(A)-selective PD155080 partially protected the rat heart on reperfusion.  相似文献   

6.
A permanent vascular endothelial cell line, EA.hy 926, was shown to express endothelin-1 (ET-1) mRNA and to secrete big ET-1 and ET-1 into culture medium. The concentration of both big ET-1 and ET-1 was significantly increased in EA.hy 926 culture medium by phosphoramidon, a metalloproteinase inhibitor, suggesting that phosphoramidon sensitive protease(s) may be responsible for the degradation of ET-1 and big ET-1. EA.hy 926 cells responded to various regulators of ET-1 similarly as primary human vascular endothelial cells. The production of ET-1 was increased by thrombin and decreased by vasodilators such as atrial natriuretic peptide, brain natriuretic peptide and nitroprusside, and by 8-bromo cyclic GMP and papaverine. This continuous human endothelial hybrid cell line could facilitate studies of regulation of ET-1 production in human endothelial cells, which in primary cultures have limited replication potential.  相似文献   

7.
Neuropeptide Y (NPY), endothelin-1 (ET-1), and angiotensin II (Ang II) are peptides that are known to play many important roles in cardiovascular homeostasis. The physiological actions of these peptides are thought to be primarily mediated by plasma membrane receptors that belong to the G-protein-coupled receptor superfamily. However, there is increasing evidence that suggests the existence of functional G-protein-coupled receptors at the level of the nucleus and that the nucleus could be a cell within a cell. Here, we review our work showing the presence in the nucleus of the NPY Y(1) receptor, the ET(A) and ET(B) receptors, as well as the AT(1) and AT(2) receptors and their respective ligands. This work was carried out in 20-week-old fetal human endocardial endothelial cells. Our results demonstrate that nuclear Y1, AT(1), and ET(A) receptors modulate nuclear calcium in these cells.  相似文献   

8.
NPY regulates human endocardial endothelial cell function   总被引:1,自引:0,他引:1  
Growing evidence suggests that endocardial endothelial cells (EECs) may play an important role in the regulation of cardiac function by releasing several cardioactive factors such as endothelin-1 (ET-1), Angiotensin II (Ang II) and nitric oxide (NO). In our laboratory, we demonstrated that similar to ET-1, EECs do possess different types of NPY receptors, specifically Y(1) and Y(2) receptors. Furthermore, activation of these receptors was found to increase the steady-state level of intracellular free Ca(2+) in EECs and the frequency of beating of cardiomyocytes. In addition, NPY was also found to be present in EECs, and an increase of steady-state intracellular free Ca(2+) induced the release of this peptide from these cells. Thus, similar to ET-1, NPY seems to be released from EECs and this peptide seems to regulate excitation-secretion of these cells as well as excitation-contraction coupling of ventricular cardiomyocytes.  相似文献   

9.
Evidence suggests that endocardial endothelial cells (EECs) may play a role in the regulation of cardiac function by releasing ET-1. Furthermore, reports in the literature suggested that differences may exist in peptide receptor distribution between the left and right EECs. In this study, we verified if the distribution and density of ET-1 and its receptors could be different in right as compared to left ventricular EECs, and whether this difference may affect ET-1-induced increase of intracellular calcium. Using immunofluorescence and 3D confocal microscopy, our results showed that in both cell types, the ET(A) receptor is present and is homogeneously distributed throughout the two cell types. The relative density of the ET(A) receptor is similar in both right and left ventricular EECs. The ET(B) receptor is also present in right and left ventricular EECs, however, the relative density of the ET(B) receptor is higher in the nucleus as compared to the cytosol. In addition, the ET(B) receptor density was found to be higher in left EECs as compared to right EECs. In addition, our results showed that ET-1 is present in the cytosol and the nucleus of both types of cells and that the relative density of ET-1 is higher in right as compared to left ventricular EECs. Moreover, using the Fura-2 calcium measurement technique, our results showed that in left ventricular EECs, both ET(A) and ET(B) receptor activation mediated the effect of ET-1 on intracellular calcium, whereas in right ventricular EECs, this effect was solely mediated by the ET(A) receptor. In conclusion, our results showed that ET-1 and its receptors are present in both right and left ventricular EECs. However, the distribution and relative density of ET-1 and its receptors seem to be different in right EECs as compared to left EECs.  相似文献   

10.
Plasma membrane endothelin type A (ET(A)) receptors are internalized and recycled to the plasma membrane, whereas endothelin type B (ET(B)) receptors undergo degradation and subsequent nuclear translocation. Recent studies show that G protein-coupled receptors (GPCRs) and ion transporters are also present and functional at the nuclear membranes of many cell types. Similarly to other GPCRs, ET(A) and ET(B) are present at both the plasma and nuclear membranes of several cardiovascular cell types, including human cardiac, vascular smooth muscle, endocardial endothelial, and vascular endothelial cells. The distribution and density of ET(A)Rs in the cytosol (including the cell membrane) and the nucleus (including the nuclear membranes) differ between these cell types. However, the localization and density of ET-1 and ET(B) receptors are similar in these cell types. The extracellular ET-1-induced increase in cytosolic ([Ca](c)) and nuclear ([Ca](n)) free Ca(2+) is associated with an increase of cytosolic and nuclear reactive oxygen species. The extracellular ET-1-induced increase of [Ca](c) and [Ca](n) as well as intracellular ET-1-induced increase of [Ca](n) are cell-type dependent. The type of ET-1 receptor mediating the extracellular ET-1-induced increase of [Ca](c) and [Ca](n) depends on the cell type. However, the cytosolic ET-1-induced increase of [Ca](n) does not depend on cell type. In conclusion, nuclear membranes' ET-1 receptors may play an important role in overall ET-1 action. These nuclear membrane ET-1 receptors could be targets for a new generation of antagonists.  相似文献   

11.
The adventitia has been recognized to play important roles in vascular oxidative stress, remodeling, and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin (ET)-1 in response to ANG II. However, it is unclear whether ET-1 receptors are expressed in the adventitia. We therefore investigated the expression and roles of both ET(A) and ET(B) receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Adventitial fibroblasts were isolated and cultured from the mouse thoracic aorta by the explant method. Cultured cells were treated with ANG II (100 nmol/l) or ET-1 (10 pM) in the presence or absence of the ANG II type 1 receptor antagonist losartan (100 μM), the ET-1 receptor antagonists BQ-123 (ET(A) receptor, 1 μM) and BQ-788 (ET(B) receptor, 1 μM), and the ET(B) receptor agonist sarafotoxin 6C (100 nM). ET-1 peptide levels were determined by ELISA, whereas ET(A), ET(B), and collagen levels were determined by Western blot analysis. ANG II increased ET-1 peptide levels in a time-dependent manner. ANG II increased ET(A) and ET(B) receptor protein levels as well as collagen in a similar fashion. ANG II-induced collagen was reduced while in the presence of BQ-123, suggesting a role for the ET(A) receptor in the regulation of the extracellular matrix. ANG II treatment in the presence of BQ-788 significantly increased ET-1 peptide levels. Conversely, the ET(B) receptor agonist sarafotoxin 6C significantly decreased ET-1 peptide levels. These data implicate a role for the ET(B) receptor in the clearance of the ET-1 peptide. In conclusion, both ET(A) and ET(B) receptors are expressed in adventitial fibroblasts, which paves the ground for the biological significance of adventitial ET-1. The ET(A) receptor subtype mediates collagen I expression, whereas the ET(B) receptor subtype may play a protective role through increasing the clearance of the ET-1 peptide.  相似文献   

12.
S Mihara  M Fujimoto 《Life sciences》1992,50(3):219-226
We characterized the endothelin (ET) receptor in Girardi heart (GH) cells derived from human atrium. The ET isopeptides ET-1, ET-2 and ET-3 induced the monotonous and long-lasting rise in cytosolic free Ca2+ concentration [( Ca2+]i) with almost the same potency in GH cells. Scatchard analysis of [125I]ET-1 and [125I]ET-3 binding revealed that GH cells have almost the same number of binding sites for either labeled ligand. All ET isopeptides displaced either [125I]ET-1 or [125I]ET-3 binding in GH cells almost equipotently. These results reveal that the functional ET receptors in GH cells are of the ETB-type. GH cells are the first cell line to be found to express the functional ETB-receptor.  相似文献   

13.
Endothelin-1 (ET-1), a peptide isolated from the culture medium of endothelial cells, mediates a variety of physiological and pathological responses including mitogenesis. We have compared the expression of ET receptors in untransformed versus ras-transformed NIH-3T3 murine fibroblasts and in untransformed versus SV40-transformed Wl38 (VA13) human fibroblasts by ligand binding and Northern analysis. NIH-3T3 and Wl38 cells displayed high affinity (200 and 220 pM) and high density (23,000 sites/cell and 14,000 sites/cell for NIH-3T3 and Wl38 cells, respectively) ET receptors. Competition binding experiments using subtype-selective ligands identified these receptors as the ETA subtype. Addition of ET-1 to the cells produced a concentration-dependent increase in intracellular calcium release. Both ras-transformed NIH-3T3 cells and SV40-transformed Wl38 cells (VA13) completely lacked [125I]ET-1 binding and failed to release calcium when exposed to ET-1. Northern analysis of the polyadenylat ed RNA (polyA RNA) isolated from untransformed and transformed cells revealed that the steady-state level of ETA receptor RNA was 90-95% less in transformed cells compared to untransformed cells. Thus, the loss of ET receptors as well as the receptor-mediated responses in transformed cells can be explained by down-regulation of ET receptor mRNA.  相似文献   

14.
Endothelin-1 (ET-1) is implicated in the fibrotic responses characterizing interstitial lung diseases, as well as in the airway remodeling process occurring in asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal human lung fibroblasts (NHLFs), the ET-1 receptor subtypes, and the intracellular signal transduction pathways involved in the proliferative effects of this peptide. Therefore, cells were exposed to ET-1 in the presence or absence of an overnight pre-treatment with either ET(A) or ET(B) selective receptor antagonists. After cell lysis, immunoblotting was performed using monoclonal antibodies against the phosphorylated, active forms of mitogen-activated protein kinases (MAPK). ET-1 induced a significant increase in MAPK phosphorylation pattern, and also stimulated fibroblast proliferation and IL-6/IL-11 release into cell culture supernatants. All these effects were inhibited by the selective ET(A) antagonist BQ-123, but not by the specific ET(B) antagonist BQ-788. The stimulatory influence of ET-1 on IL-11, but not on IL-6 secretion, was prevented by MAPK inhibitors. Therefore, such results suggest that in human lung fibroblasts ET-1 exerts a profibrogenic action via an ET(A) receptor-dependent, MAPK-mediated induction of IL-11 release and cell proliferation.  相似文献   

15.
Using specific radioimmunoassays (RIAs) for endothelin (ET) and big ET, we have studied whether ET and related peptides are secreted from renal epithelial cell lines (LLCPK1 and MDCK) of non-endothelial origin. Dilution curves of extracts of conditioned media from both LLCPK1 and MDCK cell lines were parallel to those of standard porcine (p) ET and big pET in each RIA. Both cell lines incubated in serum-free medium secreted ET- and C-terminal fragment (CTF)-like immunoreactivity (LI) of big ET as a function of time. Reverse-phase HPLC coupled with both RIAs of the extracted media from both cell lines revealed a single component with ET-LI coeluting with pET(1-21) and several components with CTF-LI, one corresponding to the elution position of big pET(1-39), one to its CTF(22-39), and the others eluting earlier than CTF. These data indicate that endothelin and related peptides are synthesized by and secreted from cells other than endothelial cells.  相似文献   

16.
17.
Endothelin (ET)-1 was originally characterized as a potent vasoconstrictor peptide secreted by vascular endothelial cells. It possesses a wide range of biological activities within the cardiovascular system and in other organs, including the brain. Also secreted by endothelial cells, nitric oxide (NO), has recently been identified as a relaxing factor, as well as a pleiotropic mediator, second messenger, immune defence molecule, and neurotransmitter. Most of the data concerning the secretion of these two agents in vitro has been collected from studies on macrovascular endothelial cells. Given the remarkable heterogeneity of endothelia in terms of morphology and function, we have analyzed the ability of brain microvessel endothelial cells in vitro to release ET-1 and NO, which, at the level of the blood-brain barrier, have perivascular astrocytes as potential targets. The present study was performed with immortalized rat brain microvessel endothelial cells, which display in culture a non transformed phenotype. Our data demonstrate that: (1) these cells release NO when induced by IFNγ and TNFα, (2) they constitutively secrete ET-1, and (3) cAMP potentiates the cytokine-induced NO release and exerts a biphasic regulation on ET-1 secretion: micromolar concentrations of 8-Br-cAMP inhibit and higher doses stimulate ET-1 secretion. This stimulation is blocked by EGTA and the calmodulin antagonist W7, but not by protein kinase C inhibitors, suggesting the involvement of the calmodulin branch of the calcium messenger system. These results suggest that cerebral microvessel endothelial cells may participate in vivo to the regulation of glial activity in the brain through the release of NO and ET-1. © 1993 Wiley-Liss, Inc.  相似文献   

18.
We have developed monoclonal (KY-ET-1-I) and polyclonal (ET-F5) antibodies against endothelin-1 (ET-1) and established sensitive radioimmunoassays (RIAs) with different specificities. The RIA with KY-ET-1-I detected ET-1, ET-2 and ET-3, while the RIA with ET-F5 recognized ET-3 very weakly. Using these RIAs, we have investigated the concentration and molecular forms of ET-1-like immunoreactivity (-LI) in culture medium of bovine aortic endothelial cells and human plasma. Culture medium of endothelial cells contained two major components compatible with big ET and ET-1. ET-1-LI was also detected in human plasma. ET-1-LI in human plasma consisted of apparent two components, the small molecular form emerging at the position of ET-1 and the large form with the peak eluting at the preceding fraction of the elution position of big ET. The concentration of the small form of ET in human plasma was about 5 pg/ml.  相似文献   

19.
The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (N(G)-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ET(B) receptor (ET(BR)) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ET(A) receptors, and did not alter the negative inotropic ET-1 influence mediated by ET(BR). Cts action through ET(BR) was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the beta-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli.  相似文献   

20.
Endothelin (ET)-1 induces proliferation of various cells including smooth muscle cells, fibroblasts, glomerular mesangial cells, endothelial cells and osteoblasts. ET-1 also stimulates synthesis of interleukin (IL)-6 in endothelial and bone marrow stromal cells of rat. It is well known that IL-6 modulates megakaryocytopoiesis. Some studies have indicated that megakaryocytes express both ET receptors and they are targets for ET. Therefore we planned to examine the effects of ET-1 on the growth of normal megakaryocytic cells in rat bone marrow primary cell culture. Bone marrow cells were cultured at 37 degrees C, in an incubator atmosphere of 5% CO2 in air and 95% relative humidity for nine days. ET-1 at 10(-7), 10(-8 ) and 10(-11) M, and control with saline were added at the beginning of the experiment protocol. At each day, plasma clots were stained using direct-coloring thiocholin method for acetylcholinesterase activity. Although 10(-7) M ET-1 did not change the proliferation of megakaryocytic cells, this could be due to the presence of over crowded fibroblasts in the same environment. 10(-8) M ET-1 stimulated megakaryocytic cell growth to 234% over the control on the fifth day. ET-1 at a concentration of 10(-11) M also rised the megakaryocytic cell number significantly reaching up to 86% at the sixth day. Our results indicate that ET-1 may modulate the growth of megakaryocytic cells by an autocrine and/or paracrine action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号