首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria   总被引:8,自引:4,他引:4       下载免费PDF全文
Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media.  相似文献   

2.
3.
Pathways of glucose catabolism, potentially operational in six strains of obligately aerobic, acidophilic bacteria, including Acidiphilium cryptum strain Lhet2, were investigated by short-term radiorespirometry and enzyme assays. Short-term radiorespirometry was conducted at pH 3.0 with specifically labeled [14C]glucose. The high rate and yield of C-1 oxidized to CO2 indicated that the Entner-Doudoroff, pentose phosphate, or both pathways were operational in all strains. Apparent nonequivalent yields of CO2 from C-1 and estimated CO2 from C-4 (C-1 > C-4) were suggestive of simultaneous glucose catabolism by both pathways in all strains tested. Variation in the relative contribution of the two pathways of glucose catabolism appears to account for observed strain differences. Calculation of the actual percent pathway participation was not feasible. Enzyme assays were completed with crude extracts of glucose-grown cells to substantiate the results obtained by radiorespirometry. The key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase) and the Entner-Doudoroff pathway (2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrase) were present in all strains examined (PW2, Lhet2, KLB, OP, and QBP). However, none of the strains exhibited detectable levels of the key enzyme of the Embden-Meyerhof-Parnas pathway, 6-phosphofructokinase. All strains contained glucose-6-phosphate dehydrogenase and fructose bisphosphate aldolase. The results of the enzyme study supported the contention that the pentose phosphate and Entner-Doudoroff pathways are operational for glucose catabolism in the acidophilic heterotrophs, and that the Embden-Meyerhof-Parnas pathway is apparently absent.  相似文献   

4.
Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters   总被引:2,自引:5,他引:2       下载免费PDF全文
Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium. Ferric hydrates and stream vegetation contained from 1,500 to over 7 × 106 cells per g.  相似文献   

5.
Thermophilic Iron-Oxidizing Bacteria Found in Copper Leaching Dumps   总被引:3,自引:0,他引:3       下载免费PDF全文
Rod-shaped bacteria capable of oxidizing ferrous iron at 55°C were cultured from samples of a copper mine leach dump. Yeast extract or cysteine was required by these Thiobacillus-like bacteria for growth, using ferrous iron as an energy source.  相似文献   

6.
A systematic study of the bioleaching of chalcopyrite (CuFeS 2 ) was conducted using axenic cultures of 11 species of acidophilic Bacteria and Archaea to obtain a direct comparison of the microbial chalcopyrite leaching capabilities of the different cultures and to determine the factors that affect Cu release. The characteristics of chalcopyrite leaching by the moderate thermophile Sulfobacillus thermosulfidooxidans , the mesophile Acidithiobacillus ferrooxidans , and the thermophile Acidianus brierleyi were used to elucidate the leaching process. Moderately thermophilic cultures of Sulfobacillus acidophilus, Acidimicrobium ferrooxidans , and Acidithiobacillus caldus were used to study the effects of different metabolic capabilities and relate those to leaching efficiency. The greatest rate of Cu solubilization from chalcopyrite was achieved at high temperatures (up to 70°C) at redox potentials below +550 mV (Ag/AgCl). The enhanced Cu solubilization observed at high temperatures resulted from accelerated chemical reaction rates, rather than from the rates at which individual acidophiles generated the mineral leaching reactants such as Fe 3+ .  相似文献   

7.
The Effect of Monensin on Pure and Mixed Cultures of Rumen Bacteria   总被引:1,自引:2,他引:1  
The antibiotic monensin was added to pure cultures of Bacteroides ruminicola, Selenomonas ruminantium, Anaerovibrio lipolytica and Megasphaera elsdenii. These organisms, representing succinate- and propionate-producing rumen bacteria, were not affected by monensin up to 10 μg/ml. Methanobacterium ruminantium was slightly inhibited by monensin, Butyrivibrio fibrisolvens, Ruminococcus albus and Streptococcus bovis were inhibited to differing extents by monensin at concentrations between 0.1 and 10 μg/ml. Bacteroides succinogenes was inhibited at first by monensin at >0.5 μg/ml but after a prolonged lag phase adapted to grow in the presence of monensin at concentrations below 5 μg/ml.
Monensin (1 μg/ml) almost completely stopped the digestion of chopped straw and dewaxed cotton fibres by rumen contents incubated in vitro. The digestion of grass and powdered filter paper was not significantly reduced under these conditions, but when the concentration of monensin was increased to between 3 and 5 μg/ml, the digestion of these substrates was reduced.  相似文献   

8.
The maximum temperature for growth (Tmax) was determined for pure and mixed cultures of acidophilic thiobacilli. The experimental system was based on incubating the cultures in liquid media exposed to a linear temperature gradient. The Tmax values varied within the range of 36.1 to 43.6°C.  相似文献   

9.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

10.
11.
Iron oxidation at neutral pH by the phototrophic anaerobic iron-oxidizing bacterium Rhodobacter sp. strain SW2 leads to the formation of iron-rich minerals. These minerals consist mainly of nano-goethite (α-FeOOH), which precipitates exclusively outside cells, mostly on polymer fibers emerging from the cells. Scanning transmission X-ray microscopy analyses performed at the C K-edge suggest that these fibers are composed of a mixture of lipids and polysaccharides or of lipopolysaccharides. The iron and the organic carbon contents of these fibers are linearly correlated at the 25-nm scale, which in addition to their texture suggests that these fibers act as a template for mineral precipitation, followed by limited crystal growth. Moreover, we evidence a gradient of the iron oxidation state along the mineralized fibers at the submicrometer scale. Fe minerals on these fibers contain a higher proportion of Fe(III) at cell contact, and the proportion of Fe(II) increases at a distance from the cells. All together, these results demonstrate the primordial role of organic polymers in iron biomineralization and provide first evidence for the existence of a redox gradient around these nonencrusting, Fe-oxidizing bacteria.Fe(II) can serve as a source of electrons for phylogenetically diverse microorganisms that precipitate iron minerals as products of their metabolism (see, e.g., references 3, 5, 25, and 30). For example, mixotrophic or autotrophic bacteria can couple the oxidation of Fe(II) to the reduction of nitrate in anoxic and neutral-pH environments. With Fe(III) being highly insoluble at neutral pH, this metabolism leads to the formation of poorly to well-crystallized iron minerals (3, 18, 26, 27) that precipitate partly within the cell periplasm for some strains (22). Similar Fe minerals are also synthesized by autotrophic bacteria that perform anoxygenic photosynthesis, using Fe(II) as an electron donor and light as a source of energy for CO2 fixation (8, 12, 30), according to the equation HCO3 + 4 Fe2+ + 10 H2O ⇆ <CH2O> + 4 Fe(OH)3 + 7 H+.However, the biological mechanisms of iron oxidation in these bacteria and in particular the way they cope with the formation of minerals within their ultrastructures are still not fully understood. Indeed, iron minerals are potentially lethal since their precipitation may alter cellular ultrastructures but also catalyze the production of free radicals (2). Recent genetic studies of the phototrophic, iron-oxidizing bacteria Rhodobacter sp. strain SW2 (6) and Rhodopseudomonas palustris strain TIE-1 (16) have identified genes (fox and pio operons, respectively) encoding proteins specific for iron oxidation. Interestingly, Jiao and Newman (16) suggested that one of these proteins could have a periplasmic localization. However, in contrast to what has been observed in some other phototrophic iron oxidizers (25) and in some nitrate-reducing, iron-oxidizing bacteria (22), no iron-mineral precipitation occurs within the periplasm of the purple nonsulfur iron-oxidizing bacterium Rhodobacter sp. strain SW2 (3). Similarly to some other anaerobic neutrophilic (22, 25) and microaerobic iron-oxidizing bacteria (5, 10), this strain seems indeed to have the ability to localize iron biomineralization at a distance from the cells, leaving large areas of the cells free of precipitates (17, 25). While it has been shown that the Gallionella and Leptothrix genera, for example, produce extracellular polymers that facilitate the nucleation of iron minerals outside cells (see, e.g., references 5 and 9), only a little is known about the existence and function of such polymers in anaerobic, neutrophilic iron-oxidizing bacteria and particularly in the phototrophic strain SW2. In the present study, we investigate iron biomineralization by the photoautotrophic iron-oxidizing bacterium Rhodobacter sp. strain SW2. We use scanning transmission X-ray microscopy (STXM) to map and identify organic polymers produced by the cells as well as the redox state of iron at the 25-nanometer scale regularly during a 2 week-period. These results demonstrate the primordial role of organic polymers in iron biomineralization and provide the first evidence for the existence of a redox gradient around SW2 cells.  相似文献   

12.
Nuclepore polycarbonate filters floating on a liquid, FeSO4-containing medium (pH 1.6) were used to isolate a moderately thermophilic bacterium from a pyrite-oxidizing enrichment culture. The isolate failed to grow on any of the conventional solid media tried. To test the general applicability of the method, the enumeration of a fastidious acidophilic organism, Thiobacillus ferrooxidans, was carried out and the results compared with those obtained with other filters, solid media, and the most probable number technique. T. ferrooxidans showed better viability on the floating polycarbonate filters and grew in a much shorter time (4 to 5 days) than with the other techniques.  相似文献   

13.
The interactions between the proteolytic X2L strain of Oenococcus oeni and the non-proteolytic 12p strain of Pediococcus pentosaceus were assayed. The characteristics of cell growth, protein degradation, and amino acid production of both strains were determined in pure and mixed cultures. O. oeni showed poor cell growth and greater ability in the release of amino acids to the extracellular medium, whereas P. pentosaceus showed a higher yield in cell production with a decrease in the amino acid concentration in the medium. P. pentosaceus especially consumed essential amino acids for growth, and O. oeni released several of the essential amino acids important for growth of P. pentosaceus. In the mixed culture, mutualism was observed. The higher activity of the proteolytic system of O. oeni in mixed culture produced an increase in cell growth and in the amount of essential amino acids released. These findings provide new knowledge about the metabolic interactions between lactic acid bacteria isolated from wine when proteins are degraded in mixed bacterial populations.  相似文献   

14.
Abstract

Redox reactions of iron in acidic environments are of economic and environmental significance, for example, for the leaching of metal ores and for the formation of acid mine drainage and acid sulfate soils. Until recently, research on microbial iron metabolism in acidic environments has mainly been focused on the role of aerobic, autotrophic ferrous iron‐oxidizing bacteria. In the present paper, recent new developments in the field of acidophilic iron metabolism are reviewed. In addition to the well‐known autotrophic ferrous iron‐oxidizing organisms, new heterotrophic isolates have been described that are capable of oxidizing ferrous iron. Microorganisms can also play an important role in the reductive part of the iron cycle. Both heterotrophic and autotrophic organisms may also be involved in this process. The contribution of heterotrophic organisms to acidophilic iron cycling can be twofold: In addition to their direct role as a catalyst, these organisms may scavenge organic compounds that inhibit their autotrophic counterparts. Detailed studies of acidophilic ecosystems are needed to assess the significance of the various types of microorganisms for the overall rate of iron cycling in these extreme environments.  相似文献   

15.
ABSTRACT

Poly(β-hydroxybutyrate) or PHB is an important member of the family of polyhydroxyalkanoates with properties that make it potentially competitive with synthetic polymers. In addition, PHB is biodegradable. While the biochemistry of PHB synthesis by microorganisms is well known, improvement of large-scale productivity requires good fermentation modeling and optimization. The latter aspect is reviewed here.

Current models are of two types: (i) mechanistic and (ii) cybernetic. The models may be unstructured or structured, and they have been applied to single cultures and co-cultures. However, neither class of models expresses adequately all the important features of large-scale non-ideal fermentations. Model-independent neural networks provide faithful representations of observations, but they can be difficult to design. So hybrid models, combining mechanistic, cybernetic and neural models, offer a useful compromise. All three kinds of basic models are discussed with applications and directions toward hybrid model development.  相似文献   

16.
Mixed cultures of bacteria, enriched from aquatic sediments, grew anaerobically on all three isomers of phthalic acid. Each culture grew anaerobically on only one isomer and also grew aerobically on the same isomer. Pure cultures were isolated from the phthalic acid (o-phthalic acid) and isophthalic acid (m-phthalic acid) enrichments that grew aerobically on phthalic and isophthalic acids. Cell suspension experiments indicated that protocatechuate is an intermediate of aerobic catabolism. Pure cultures which grew aerobically on terephthalic acid (p-phthalic acid) could not be isolated from the enrichments, and neither could pure cultures that grew anaerobically on any of the isomers. Cell suspension experiments suggested that separate pathways exist for the aerobic and anaerobic oxidation of phthalic acids. Each enrichment culture used only one phthalic acid isomer under anaerobic conditions, but all isomers were simultaneously adapted for the anaerobic catabolism of benzoate. Cells grown anaerobically on a phthalic acid immediately attacked the isomer under anaerobic conditions, whereas there was a lag before aerobic breakdown occurred, and, for phthalic and terephthalic acids, chloramphenicol stopped aerobic adaptation but had no effect on anaerobic catabolism. This work suggests that phthalic acids are biodegradable in anaerobic environments.  相似文献   

17.
Several pure strains of rumen bacteria have previously been shown to degrade isolated hemicelluloses from a form insoluble in 80% acidified ethanol to a soluble form, regardless of the eventual ability of the organism to utilize the end products as energy sources. This study was undertaken to determine whether similar hemicellulose degradation or utilization, or both, occurs from intact forages. Fermentations by pure cultures were run to completion by using three maturity stages of alfalfa and two maturity stages of bromegrass as individual substrates. Organisms capable of utilizing xylan or isolated hemicelluloses could degrade and utilize intact forage hemicellulose, with the exception of two strains of Bacteroides ruminicola which were unable to degrade or utilize hemicellulose from grass hays. Intact forage hemicelluloses were extensively degraded by three cellulolytic strains that were unable to use the end products; in general, these strains degraded a considerably greater amount of hemicelluloses than the hemicellulolytic organisms. Hemicellulose degradation or utilization, or both, varied markedly with the different species and strains of bacteria, as well as with the type and maturity stage of the forage. Definite synergism was observed when a degrading nonutilizer was combined with either one of two hemicellulolytic strains on the bromegrass substrates. One hemicellulolytic strain, which could not degrade or utilize any of the intact bromegrass hemicellulose alone, almost completely utilized the end products solubilized by the nonutilizer. Similar synergism, although of lesser magnitude, was observed when alfalfa was used as a substrate.  相似文献   

18.
Microbial consortia capable of aerobically degrading more than 99% of exogenous trichloroethylene (TCE) (50 mg/liter) were collected from TCE-contaminated subsurface sediments and grown in enrichment cultures. TCE at concentrations greater than 300 mg/liter was not degraded, nor was TCE used by the consortia as a sole energy source. Energy sources which permitted growth included tryptone-yeast extract, methanol, methane, and propane. The optimum temperature range for growth and subsequent TCE consumption was 22 to 37°C, and the pH optimum was 7.0 to 8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride, and, possibly, chloroform.  相似文献   

19.
An iron-rich travertine at Shionoha hot-spring in western Japan, displays a sub-millimetre order lamination consisting of microbially-incduced ferrihydrite and calcite-matrix. The ferrihydrite occurs as 5- to 10-μ m thick filaments that extend and apparently branch upwards. A sheathed morphotype having a meshwork of a rod-like organic substance and phylogenetically identified species of genus Siderooxidans were responsible for precipitation of the ferrihydrite. The iron oxidizers are microaerophilic and thrive on Fe(II) and a redox gradient, that are available at the study site near the vent. Bacterial activity enhanced ferrihydrite deposition at rate of ~ 10 μ m/day, and formed the laminated texture. The bacteria increased their density upward in each lamina and suddenly decreased the density at the top of the lamina. This change may have resulted from a deficiency of metabolic substances at the sediment–water interface when the iron-oxidizers became very dense or when other chemoautotrophs, such as methanotrophs, consumed oxygen on the surface. The metabolism of the microaerophilic iron-oxidizing bacteria growing in neutral pH environments contribute significantly to the precipitation of iron mineral deposits. Because the laminated textures observed in this study have a great preservation potential, they help to identify the contributions of iron-oxidizers to ancient BIFs and provide an idea for pO2 and pH of the ancient ocean.  相似文献   

20.
Crude oil was treated with purified emulsan, the heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population as well as nine different pure cultures isolated from various sources was tested for biodegradation of emulsan-treated and untreated crude oil. Biodegradation was measured both quantitatively and qualitatively. Recovery of 14CO2 from mineralized 14C-labeled substrates yielded quantitative data on degradation of specific compounds, and capillary gas chromatography of residual unlabeled oil yielded qualitative data on a broad spectrum of crude oil components. Biodegradation of linear alkanes and other saturated hydrocarbons, both by pure cultures and by the mixed population, was reduced some 50 to 90% after emulsan pretreatment. In addition, degradation of aromatic compounds by the mixed population was reduced some 90% in emulsan-treated oil. In sharp contrast, aromatic biodegradation by pure cultures was either unaffected or slightly stimulated by emulsification of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号