首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three hemoglobin-degrading proteinases were partially purified from food vacuoles isolated from trophozoite-stage forms of the malarial parasite Plasmodium falciparum. Two of the proteinases (M1 and M2) were solubilized by repeated sonication. The remaining proteinase (M3) was solubilized by treatment of the particulate fraction with taurocholic acid, suggesting that proteinase M3 is a membrane-bound proteinase whereas proteinases M1 and M2 are weakly associated with parasite membrane. The location of these proteinases suggests that they may participate in the digestion of host cytosolic protein. After partial purification, but not before, proteinases M1, M2 and M3 are highly sensitive to pepstatin, supporting their designation as aspartic proteinases. These aspartic proteinases show broad specificity for protein substrates. Native hemoglobin, acid denatured hemoglobin and oxidatively damaged hemoglobin are comparable substrates. Hemoglobin within the food vacuole was shown to be primarily native hemoglobin. Chemical modification studies indicate that these three aspartic proteinases have similar properties. The peptide maps from degradation of hemoglobin, however, suggest that aspartic proteinases M1, M2 and M3 are distinct proteinases.  相似文献   

2.
The amino acid sequence of Mucor pusillus aspartic proteinase was determined by analysis of fragments obtained from cleavage of the enzyme by CNBr and limited tryptic digestion. The proteinase is a single polypeptide chain protein containing 361 amino acid residues, cross-linked by two disulfide bonds. A sugar moiety composed of two GlcNAc residues and four neutral sugar residues is asparagine-linked to the chain. The sequence of M. pusillus proteinase is highly homologous with the M. miehei proteinase (83% identity). The homology with other aspartic proteinases is low (22-24%) and indicates that the Mucor proteinases diverged at an early evolutionary phase. The most conservative regions of the molecule are those involved in catalysis and forming the binding cleft and the core region of the molecule.  相似文献   

3.
In order to characterize the zymogen of the milk-clotting enzyme from Rhizomucor miehei, we constructed a cDNA library on pBR327 in Escherichia coli. Aspartic proteinase-specific recombinants were isolated by colony hybridization to a specific oligonucleotide mixture, and the cDNA sequence corresponding to a precursor form of the enzyme was determined. The deduced amino acid sequence shows that this secreted fungal proteinase is synthesized as a precursor. The first 22 amino acid residues in this precursor constitute a typical signal peptide. The amino acid sequence of the following 47-amino-acid-long prosegment shows homology to the prosegments from both the extracellular and intracellular vertebrate aspartic proteinases, and to the prosegments from the yeast and Mucor pusillus aspartic proteinases as well. These observations suggest that all aspartic proteinases are synthesized with a prosegment and that this prosegment is essential for the correct folding of all the mature enzymes. The active Rhizomucor miehei enzyme consists of 361 amino acid residues with a total molecular weight of 38,701. Clusters of identities around the active site cleft support the assumption that these proteinases have a common folding of their peptide chains. The disulphide bridges were localized in the fungal enzyme, and 2 N-glycosylation sites were identified.  相似文献   

4.
Many small, single-domain proteins show equilibrium and kinetic folding mechanisms that appear to be adequately described as two state. The two-state model makes several predictions that can be tested experimentally. First, the conformational stability determined at or extrapolated to a set of reference conditions should be independent of the measurement method (thermal or solvent denaturation or hydrogen exchange). Second, model-independent measures of the cardinal thermodynamic parameters (T(m), DeltaH) as determined from direct calorimetric means should be identical to those determined from the two-state analysis of thermal unfolding data. Third, the ratio of the kinetic folding and unfolding rate constants should be equal to K(eq) determined from an equilibrium measurement under the same conditions. Here, we show that the wild-type HPr protein from Bacillus subtilis does not meet all of these criteria under our standard conditions. However, if we replace the side chain of Asp69, or add moderate concentrations of salt, we find excellent two-state behavior in both equilibrium and kinetic folding. Thus, for this protein and possibly others, very subtle changes in the primary structure or in the solution conditions can dramatically alter the relative stabilities of the native intermediate, and unfolded ensembles can cause an observable change in the nature of the folding mechanism.  相似文献   

5.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

6.
The influence of the thermodynamic activity of water (a(w))on the synthesis of triolein catalyzed by Mucor miehei lipase was investigated. Its effect on the equilibrium and on the rates of the different reactions present, esteification and mono- and diglyceride isomerization, was evaluated through measurements made in controlled water activity atmosphere. The apparent equilibrium constants were measured from the concentration of the different species as a function of the intial glycerol-to oleic-acid ratio using all the values at once with a multi-response nonlinear regression technique. Rate constants were determined from kinetic measurements and non-linear regression uning the variation of the concentration of all significant species in the system. Except for the synthesis of diolein from monoolein, which shows a maximum for a(w) approximately 0.5, the apparent rate constants of the various reactions are not significantly affected by the value of the water activity. The equilibrium is shifted to-ward the synthesis of triolein for low values of a(w), indicating that in the design of a process for triglyceride synthesis, using M. miehei lipase as a catalyst, the water activity can be lowered to extreme values to favor the synthesis, without any sacrifice on the productivity of the process. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The amino-terminal structure of rat gastric cathepsin E was identified and compared with the corresponding regions of human procathepsin E and other aspartic proteinases. The alignment revealed that cathepsin E has the most extended amino-terminal structure in aspartic proteinases, thus suggesting that the activation peptide (propeptide) of the human enzyme is 39-residues long. Analysis of oligosaccharide units suggested that rat cathepsin E possesses one N-linked carbohydrate unit, probably of the high mannose type. No evidence was obtained for the presence of O-linked sugars in rat cathepsin E.  相似文献   

8.
Spudich G  Marqusee S 《Biochemistry》2000,39(38):11677-11683
Experimental studies of protein stability often rely on the determination of an "m value", which describes the denaturant dependence of the free energy change between two states (DeltaG = DeltaG(H2O) - m[denaturant]). Changes in the m value accompanying site specific mutations are usually attributed to structural alterations in the native or unfolded ensemble. Here, we provide an example of significant reduction in the m value resulting from a subtle deviation in two-state behavior not detected by traditional methods. The protein that is studied is a variant of Escherchia coli RNase H in which three residues predicted to be involved in a partially buried salt bridge network were mutated to alanine (R46A, D102A, and D148A). Equilibrium denaturant profiles monitored by both fluorescence and circular dichroism appeared to be cooperative, and a two-state analysis yielded a DeltaG(UN) of approximately -3 kcal/mol with an m value of 1.4 kcal mol(-1) M(-1) (vs 2.3 for RNase H). Analysis of kinetic refolding experiments suggests that the system is actually three-state at equilibrium with an appreciable concentration of an intermediate state under low denaturant concentrations. The stability of the native state determined from a fit of these kinetic data is -6.7 kcal/mol, suggesting that the stability determined by traditional two-state equilibrium analysis is a gross underestimate. The only hint to this loss of two-state behavior was a decrease in the apparent m value, and the presence of the equilibrium intermediate was only identified by a kinetic analysis. Our work serves as a cautionary note; the possibility of a three-state system should be closely addressed before interpreting a change in the m value as a change in the native or unfolded state.  相似文献   

9.
Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet.The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases.  相似文献   

10.
We have carried out equilibrium studies of the effect of the amino acid residue difference in the primary structure of bovine cytochrome-c (b-cyt-c) and horse cyt-c (h-cyt-c) on the mechanism of their folding <--> unfolding processes at pH 6.0 and 25 degrees C. It has been observed that guanidinium chloride (GdmCl)-induced denaturation of b-cyt-c follows a two-state mechanism and that of h-cyt-c is not a two-state process. This conclusion is reached from the coincidence and non-coincidence of GdmCl-induced transition curves of bovine and horse proteins, respectively, monitored by measurements of absorbance at 405, 530 and 695 nm and circular dichroism (CD) at 222, 416 and 405 nm. These measurements on h-cyt-c in the presence of GdmCl in the concentration range 0.75-2.0 M also suggest that the protein retains all the native far-UV CD but has slightly perturbed tertiary interaction. The intermediate in the presence of these low denaturant concentrations does not have the structural characteristics of a molten globule as judged by the 8-Anilino-1-napthalene sulfonic acid (ANS) binding and near-UV CD experiments. We have also carried out thermal denaturation studies of bovine and horse cyts-c in the presence of GdmCl monitored by absorbance at 405 nm and far-UV CD at 222 nm. The heat-induced denaturation measurements in the presence of the denaturant show (1) that denaturation of b-cyt-c is a two-state process and that of h-cyt-c does not follow a two-state mechanism, and (2) that the enthalpy change on denaturation of both proteins strongly depends on GdmCl concentration.  相似文献   

11.
This study describes how charge modification affects aggregation of ovalbumin, thereby distinguishing the role of conformational and electrostatic stability in the process. Ovalbumin variants were engineered using chemical methylation or succinylation to obtain a range of protein net charge from -1 to -26. Charge modification significantly affected the denaturation temperature. From urea-induced equilibrium denaturation studies, it followed that unfolding proceeded via an intermediate state. However, the heat-induced denaturation process could still be described as a two-state irreversible unfolding transition, suggesting that the occurrence of an intermediate has no influence on the kinetics of unfolding. By monitoring the aggregation kinetics, the net charge was found not to be discriminative in the process. It is concluded that the dominant factor determining ovalbumin aggregation propensity is the rate of denaturation and not electrostatic repulsive forces.  相似文献   

12.
4-Oxalocrotonate tautomerase (4-OT) is a bacterial enzyme that is comprised of 6 identical 62 amino acid subunits. The 4-OT enzyme is an attractive model system in which to study the interrelationship between protein folding, subunit assembly, and catalytic function. Here we report on the GuHCl-induced equilibrium unfolding properties of wild-type 4-OT using catalytic activity measurements and using far-UV circular dichroism (CD) spectroscopy. We demonstrate that the unfolding of wild-type 4-OT in 50 mM phosphate buffers containing 6 M GuHCl is reversible at pHs 6.0, 7.4, and 8.5; and we find that there is both an enzyme concentration dependence and a pH dependence to the equilibrium unfolding properties of 4-OT. Our data suggests that the GuHCl-induced unfolding of 4-OT in 50 mM phosphate buffer at pH 8.5 can be modeled as a two-state process involving folded hexamer and unfolded monomer. On the basis of this model, we determined a free-energy value for the unfolding of 4-OT at pH 8.5 to be 68.7 +/- 3.2 kcal/mol under standard state conditions (1 M hexamer). In 50 mM phosphate buffers at pHs 6.0 and 7.4, only the catalytic activity denaturation curves are consistent with a two-state folding mechanism. At the lower pHs the far-UV-CD transitions are not well described by a two-state model. Our results at pHs 6.0 and 7.4 suggest that intermediate state(s) are populated in the equilibrium unfolding reaction at these lower pHs and that these intermediate state(s) have some helical content but no measurable catalytic activity.  相似文献   

13.
Structural properties and folding of interleukin-1 receptor antagonist (IL-1ra), a therapeutically important cytokine with a symmetric beta-trefoil topology, are characterized using optical spectroscopy, high-resolution NMR, and size-exclusion chromatography. Spectral contributions of two tryptophan residues, Trp17 and Trp120, present in the wild-type protein, have been determined from mutational analysis. Trp17 dominates the emission spectrum of IL-1ra, while Trp120 is quenched presumably by the nearby cysteine residues in both folded and unfolded states. The same Trp17 gives rise to two characteristic negative peaks in the aromatic CD. Urea denaturation of the wild-type protein is probed by measuring intrinsic and extrinsic (binding of 1-anilinonaphthalene-8-sulfonic acid) fluorescence, near- and far-UV CD, and 1D and 2D ((1)H-(15)N heteronuclear single quantum coherence (HSQC)) NMR. Overall, the data suggest an essentially two-state equilibrium denaturation mechanism with small, but detectable structural changes within the pretransition region. The majority of the (1)H-(15)N HSQC cross-peaks of the folded state show only a limited chemical shift change as a function of the denaturant concentration. However, the amide cross-peak of Leu31 demonstrates a significant urea dependence that can be fitted to a two-state binding model with a dissociation constant of 0.95+/-0.04 M. This interaction has at least a five times higher affinity than reported values for nonspecific urea binding to denatured proteins and peptides, suggesting that the structural context around Leu31 stabilizes the protein-urea interaction. A possible role of denaturant binding in inducing the pretransition changes in IL-1ra is discussed. Urea unfolding of wild-type IL-1ra is sufficiently slow to enable HPLC separation of folded and unfolded states. Quantitative size-exclusion chromatography has provided a hydrodynamic view of the kinetic denaturation process. Thermodynamic stability and unfolding kinetics of IL-1ra resemble those of structurally and evolutionary close IL-1beta, suggesting similarity of their free energy landscapes.  相似文献   

14.
Site-directed mutagenesis was carried out to investigate the functional roles of amino acid residues of Rhizomucor pusillus pepsin (RMPP) in substrate-binding and catalysis. Mutations of two amino acid residues, E13 in the S3 subsite and N219 in the S3/S4 subsites, caused marked changes in kinetic parameters for two substrate peptides with different sequences. Further site-directed mutagenesis at E13 suggested that E13 plays a critical role in forming the correct hydrogen bond network around the active center. In the crystal structure of Rhizomucor miehei pepsin (RMMP), which is an aspartic proteinase produced by Rhizomucor miehei and shows 81% amino acid identity to RMPP, the Oepsilon atom of N219 forms a hydrogen bond with the N-H of isovaline in pepstatin A, a statine-type inhibitor, at the P3 position, suggesting that the loss of the hydrogen bond causes an unfavorable arrangement of the P3 residue. Among the mutants constructed, the E13A mutant showed a 5-fold increase in the ratio of clotting versus proteolytic activity without significant loss of clotting activity. This mutant may present a promising candidate for a useful milk coagulant.  相似文献   

15.
Linamarase (EC. 3.2.1.21) was purified from different tissues of cassava (leaf, rind and tuber) to compare the kinetic properties and characteristics of the enzyme in these tissues. Purified enzyme preparation appeared as single band of average molecular size 70 kD in SDS-PAGE gels. The kinetic properties of linamarase with respect to pH and temperature indicated that tuber linamarase possessed a broader pH optimum and higher temperature stability as compared to leaf and rind enzymes. Differences in Km values for linamarin were observed with leaf linamarase having the highest Km value (500 μM) followed by rind (400 μM) and then tuber (250 μM) linamarases. Rind enzyme appeared to be less susceptible to urea denaturation than the leaf enzyme. Comparison of elution profiles from DEAE-Cellulose indicated that the relative amounts of the various ionic forms of the enzyme differed in the case of each tissue. Elution patterns of the enzyme from Con A-Sepharose also differed, suggesting difference in glycosylation among leaf, rind and tuber enzymes. This was confirmed by carbohydrate analysis which showed that the tuber linamarase contained significantly higher amount of protein bound carbohydrate. These results suggest the possible occurrence of different forms of linamarase in cassava.  相似文献   

16.
Homodimeric archaeal histones and heterodimeric eukaryotic histones share a conserved structure but fold through different kinetic mechanisms, with a correlation between faster folding/association rates and the population of kinetic intermediates. Wild-type hMfB (from Methanothermus fervidus) has no intrinsic fluorophores; Met35, which is Tyr in hyperthermophilic archaeal histones such as hPyA1 (from Pyrococcus strain GB-3A), was mutated to Tyr and Trp. Two Tyr-to-Trp mutants of hPyA1 were also characterized. All fluorophores were introduced into the long, central alpha-helix of the histone fold. Far-UV circular dichroism (CD) indicated that the fluorophores did not significantly alter the helical content of the histones. The equilibrium unfolding transitions of the histone variants were two-state, reversible processes, with DeltaG degrees (H2O) values within 1 kcal/mol of the wild-type dimers. The hPyA1 Trp variants fold by two-state kinetic mechanisms like wild-type hPyA1, but with increased folding and unfolding rates, suggesting that the mutated residues (Tyr-32 and Tyr-36) contribute to transition state structure. Like wild-type hMfB, M35Y and M35W hMfB fold by a three-state mechanism, with a stopped-flow CD burst-phase monomeric intermediate. The M35 mutants populate monomeric intermediates with increased secondary structure and stability but exhibit decreased folding rates; this suggests that nonnative interactions occur from burial of the hydrophobic Tyr and Trp residues in this kinetic intermediate. These results implicate the long central helix as a key component of the structure in the kinetic monomeric intermediates of hMfB as well as the dimerization transition state in the folding of hPyA1.  相似文献   

17.
Recombinant human gamma-interferon is dimeric in solution at pH 7-4 as revealed by analytical gel-filtration. It was shown by circular dichroism that decreasing pH to 5.0 does not affect the secondary and tertiary structures of gamma-interferon macromolecule. It was established that heat denaturation process of gamma-interferon obeys the two-state transition model and can be described as the first-order reversible reaction. Temperature dependence of the denaturation-renaturation rate constants was shown to be consistent with the Arrhenius law. The equilibrium value of the denaturation temperature was found. Effective enthalpy of denaturation was determined both by thermodynamic and kinetic approaches. The data obtained showed that in the pH range 7-4 the dimeric IFN-gamma structure may be considered as a single cooperative thermodynamic domain. Thus, it may be concluded that gamma-interferon dimerization is necessary for the existence of the corresponding tertiary structure of the macromolecule.  相似文献   

18.
The urea-induced denaturation of dimeric Erythrina indica lectin (EIL) has been studied at pH 7.2 under equilibrium and kinetic conditions in the temperature range of 40-55 degrees C. The structure of EIL is largely unaffected in this temperature range in absence of denaturant, and also in 8 M urea after incubation for 24 h at ambient temperature. The equilibrium denaturation of EIL exhibits a monophasic unfolding transition from the native dimer to the unfolded monomer as monitored by fluorescence, far-UV CD, and size-exclusion FPLC. The thermodynamic parameters determined for the two-state unfolding equilibrium show that the free energy of unfolding (DeltaGu, aq) remains practically same between 40 and 55 degrees C, with a value of 11.8 +/- 0.6 kcal mol(-1) (monomer units). The unfolding kinetics of EIL describes a single exponential decay pattern, and the apparent rate constants determined at different temperatures indicate that the rate of the unfolding reaction increases several fold with increase in temperature. The presence of probe like external metal ions (Mn2+, Ca2+) does not influence the unfolding reaction thermodynamically or kinetically; however, the presence of EDTA affects only kinetics. The present results suggest that the ability of EIL to preserve the structural integrity against the highly denaturing conditions is linked primarily to its kinetic stability, and the synergic action of heat and denaturant is involved in the unfolding of the protein.  相似文献   

19.
Equilibrium and kinetic studies of the unfolding-refolding of goat spleen cathepsin B induced by urea are reported. Tryptophan fluorescence and enzyme activity were monitored. The activity of cathepsin B is lost reversibly at 1.2 M-urea. The enzyme unfolds in two main stages, having a stable intermediate (Y) between its native (N) and fully denatured (D) states. Enzyme activity and kinetic studies of these transitions indicate the existence of at least two intermediate forms (X1 and X2) between the N and Y states. The overall denaturation and renaturation scheme is thus suggested to be N in equilibrium with X1----X2 in equilibrium with Y in equilibrium with D. The multiplicity of the intermediate and fractional regaining of the activity up to a urea concentration of 2 M indicates the presence of multidomain structure in cathepsin B.  相似文献   

20.
Kim DH  Jang DS  Nam GH  Yun S  Cho JH  Choi G  Lee HC  Choi KY 《Biochemistry》2000,39(42):13084-13092
Equilibrium and kinetic analyses have been carried out to elucidate the folding mechanism of homodimeric ketosteroid isomerase (KSI) from Comamonas testosteroni. The folding of KSI was reversible since the activity as well as the fluorescence and CD spectra was almost completely recovered after refolding. The equilibrium unfolding transitions monitored by fluorescence and CD measurements were almost coincident with each other, and the transition midpoint increased with increasing protein concentration. This suggests that the KSI folding follows a simple two-state mechanism consisting of native dimer and unfolded monomer without any thermodynamically stable intermediates. Sedimentation equilibrium analysis and size-exclusion chromatography of KSI at different urea concentrations supported the two-state model without any evidence of folded monomeric intermediates. Consistent with the two-state model, (1)H-(15)N HSQC spectra obtained for KSI in the unfolding transition region could be reproduced by a simple addition of the spectra of the native and the unfolded KSI. The KSI refolding kinetics as monitored by fluorescence intensity could be described as a fast first-order process followed by a second-order and a subsequent slow first-order processes with rate constants of 60 s(-)(1), 5.4 x 10(4) M(-)(1).s(-)(1), and 0.017 s(-)(1), respectively, at 0.62 M urea, suggesting that there may be a monomeric folding intermediate. After a burst phase that accounts for >83% of the total amplitude, the negative molar ellipticity at 225 nm increased slowly in a single phase at a rate comparable to that of the bimolecular intermediate step. The kinetics of activity recovery from the denatured state were markedly dependent upon the protein concentration, implying that the monomers are not fully active. Taken together, our results demonstrate that the dimerization induces KSI to fold into the complete structure and is crucial for maintaining the tertiary structure to perform efficient catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号