首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study was designed to localize transforming growth factor alpha (TGF-) and epidermal growth factor receptor (EGFR) expression in the developing human gastrointestinal tract and pancreas. Immunohistochemical techniques using specific antibodies against human TGF- and EGFR were performed on digestive tissues of fetuses from 9 to 10 to 24 weeks of gestation, children and adults. In fetuses, TGF- and EGFR proteins were expressed in all epithelial tissues studied with a good correlation and from an age as early as 9 to 10 weeks of gestation, except for TGF- in the esophagus. The strongest TGF- immunostaining was noted in the stomach and the proximal colon. Unexpectedly, immunoreactive gut endocrine cells were observed with the two antibodies used. Relatively numerous in fetuses, they decreased in number with age and were rare in adults particularly along the colon. Enteroglucagon-secreting cells were shown to express TGF- while some gastrin, somatostatin and pancreatic glucagon cells were immunostained with EGFR antibodies. The presence of TGF- and of its recetor in digestive tract epithelium and pancreatic tissues early in fetal life suggests a functional role for TGF- during the developmental process of the digestive system. We demonstrate that TGF- is also produced by endocrine cells and might have an additional mode of action other than paracrine, at least during fetal life.  相似文献   

3.
4.
Summary Transforming growth factor-alpha (TGF-) is a polypeptide related to epidermal growth factor (EGF). Both bind to EGF-receptor (EGF-R) to carry out their function in a variety of tissues and cell lines. Several studies have shown their presence in mammalian kidney, however, nothing has to date been stated concerning their existence in avian kidney. Expression of TGF- and EGF-R is reported here for the first time during the development of the chicken kidney. Using immunohistochemical techniques, we identified a TGF- (but not EGF) in mesonephric distal tubule cells from day 8 to day 20 of embryonic development and in metanephric distal tubule cells from day 14 of embryonic development to the adult. The histochemical characteristics of these cells and their histological localization suggest that they may be the principal cells of the distal tubules. Similarly, EGF-R was found in mesonephric proximal tubule cells from day 7 to day 18 of embryonic development and in metanephric proximal tubule cells from day 13 of embryonic development up to adult stages. The coexistence of both TGF- and EGF-R from the onset of development of mesonephros and metanephros supports their possible role in mechanisms of proliferation and differentiation of the cells of these organs.  相似文献   

5.
Gene expression and immunohistochemical localization of epidermal growth factor (EGF), transforming growth factor-α (TGF-α), and epidermal growth factor receptor (EGF-R) were compared between the endometrium of bitches (Canis familiaris) with pyometra accompanied by cystic endometrial hyperplasia (CEH) and that of healthy bitches at similar stages of the estrous cycle. In normal bitches, endometrial TGF-α mRNA levels were highest at proestrus and gradually decreased as the cycle progressed to anestrus. Epidermal growth factor receptor mRNA levels were not significantly affected by the stage of the estrous cycle. Epidermal growth factor mRNA levels were higher at Day 35 of diestrus than at other stages of the estrous cycle (P < 0.05). In bitches with pyometra, endometrial TGF-α and EGF-R mRNA levels did not differ significantly from those at diestrus in normal bitches, but EGF mRNA levels were lower than those at Day 35 of diestrus in normal bitches (P < 0.05). In normal bitches, positive immunohistochemical staining for TGF-α, EGF, and EGF-R was mainly present in the glandular and luminal epithelial cells of the endometrium. In contrast, in bitches with pyometra, immunoreactivity for EGF was clearly present in endometrial stromal cells. Inflammatory cells that had infiltrated the endometrial stroma stained strongly for TGF-α and EGF-R. Luminal and glandular epithelial cells also stained positive for EGF-R. In conclusion, expression of TGF-α by inflammatory cells and a low level of expression and differential localization of EGF may be involved in aberrant growth of endometrial glands and development of CEH.  相似文献   

6.
The expression and function of transforming growth factor alpha (TGF-α) in the kidney are not fully characterised. There exists controversy concerning the detection of renal TGF-α mRNA and the localisation of its immunoreactivity. In attempts to clarify the detection and localisation issue, the present study aimed to detect TGF-α mRNA in neonate and adult rat kidneys, to examine the specificity of two commonly used anti-TGF-α antibodies and finally to localise renal TGF-α immunoreactivity using a specific antibody. TGF-α mRNA of around 4.8 kb was readily detected with a sensitive non-radioactive northern analysis, with a similar abundance in neonatal and adult rat kidneys. Renal TGF-α peptide of the 6-kDa mature form was identified by western blotting. By using various controls, including specimens from TGF-α knock out mice in comparison with wild-type mice, the present study has confirmed the specificity of a polyclonal anti-human recombinant TGF-α antibody. With this antibody, TGF-α immunoreactivity was localised to the proximal tubules in renal cortex. In addition, the present study has also demonstrated a non-specificity in localising TGF-α in rodent kidneys by the most commonly used monoclonal anti-human TGF-α C-terminal peptide antibody, which stained collecting ducts in renal cortex and medulla. Accepted: 8 April 1999  相似文献   

7.
Fibroblast proliferation is an early feature of progressive tissue fibrosis and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). In the oral mucosa, fibroblasts have a unique phenotype and demonstrate healing with no fibrosis/scarring. Our previous studies show that whereas dermal fibroblasts proliferate in response to TGF-β1, oral fibroblasts have an antiproliferative response to this cytokine. Hyaluronan (HA) was directly linked to this TGF-β1-dependent response. The aim of this study was to understand the underlying mechanism through which HA regulates TGF-β-dependent responses. Using patient-matched oral and dermal fibroblasts, we show that TGF-β1-dependent proliferation is mediated through the HA receptor CD44, whereas the TGF-β1-mediated antiproliferative response is CD44-independent. Furthermore, overexpression of HAS2 (HA synthase-2) in oral cells modifies their response, and they subsequently demonstrate a proliferative, CD44-dependent response to TGF-β1. We also show that epidermal growth factor (EGF) and its receptor (EGFR) are essential for TGF-β1/HA/CD44-dependent proliferation. Increased HA levels promote EGFR and CD44 coupling, potentiating signal transduction through the MAPK/ERK pathway. Thus, in a HA-rich environment, late ERK1/2 activation results from EGFR/CD44 coupling and leads to a proliferative response to TGF-β1. In comparison, in a non-HA-rich environment, only early ERK1/2 activation occurs, and this is associated with an antiproliferative response to TGF-β1. In summary, HA facilitates TGF-β1-dependent fibroblast proliferation through promoting interaction between CD44 and EGFR, which then promotes specific MAPK/ERK activation, inducing cellular proliferation.  相似文献   

8.
The epidermal growth factor (EGF) family of polypeptides is regulators for tissue development and repair, and is characterized by the fact that their mature forms are proteolytically derived from their integral membrane precursors. This article reviews roles of the prominent members of the EGF family (EGF, transforming growth factor-alpha [TGF-α] and heparin-binding EGF [HB-EGF]) and the related neuregulin family in the nerve system. These polypeptides, produced by neurons and glial cells, play an important role in the development of the nervous system, stimulating proliferation, migration, and differentiation of neuronal, glial, and Schwann precursor cells. These peptides are also neurotrophic, enhancing survival and inhibiting apoptosis of post-mitotic neurons, probably acting directly through receptors on neurons, or indirectly via stimulating glial proliferation and glial synthesis of other molecules such as neurotrophic factors. TGF-α, EGF, and neuregulins are involved in mediating glial-neuronal and axonal-glial interactions, regulating nerve injury responses, and participating in injury-associated astrocytic gliosis, brain tumors, and other disorders of the nerve system. Although the collective roles of the EGF family (as well as those of the neuregulins) are shown to be essential for the nervous system, redundancy may exist among members of the EGF family.  相似文献   

9.
Summary Order parameters for the backbone N–H and C–H bond vectors have been calculated from a 150 ps molecular dynamics (MD) simulation of human type- transforming growth factor in H2O solvent. Two kinds of crankshaft motions of the polypeptide backbone are observed in this MD trajectory. The first involves small-amplitude rocking of the rigid peptide bond due to correlated changes in the backbone dihedral angles i–1 and i. These high-frequency librational crankshaft motions are correlated with systematically smaller values of motional order parameters for backbone N–H bond vectors compared to C–H bond vectors. In addition, infrequent crankshaft flips of the peptide bond from one local minimum to another are observed for several amino acid residues. These MD simulations demonstrate that comparisons of N–H and C–H order parameters provide a useful approach for identifying crank-shaft librational motions in proteins.  相似文献   

10.
We studied the expression and distribution of transforming growth factor-β (TGF-β) isoforms in the rat male accessory sex glands and the epididymis. Our data demonstrate the expression of both TGF-β1 and -β3 isoforms in ventral prostate (VP), seminal vesicle (SV), coagulating gland (CG), and epididymis (E) by Northern blot analysis. In addition, there was differential expression of TGF-β3 in the three regions of epididymis, the corpus region being the highest. Immunostaining data showed intense staining for latent TGF-β1 in all the male accessory glands. In contrast, no staining using antibodies specific for active TGF-β1 was observed. No expression of TGF-β2 was evident either by immunohistochemistry or Northern blot analysis. The presence of mature TGF-β3 protein was observed in the secretory epithelium of VP, CG, and corpus E. There was no detectable staining of TGF-β3 in the seminal vesicle and caput and cauda regions of epididymis. These data suggest possible differential regulation of TGF-β isoform expression in the male reproductive system and predict unique roles for individual TGF-β isoforms in sperm maturation and maintenance.  相似文献   

11.
Platelet-derived growth factor (PDGF), abundant in bone tissue, has been reported to stimulate mesenchymal cell proliferation and migration. To elucidate the functional roles of PDGF during fracture healing, we investigated the expression of PDGF-A and -B chain proteins and receptor α and β mRNAs in fractured mouse tibiae. Twelve-week-old male BALB/c mice were operated on to make a closed fracture on the proximal tibia. On days 2, 4, 7, 10, 14, 21, and 28 after the operation, the fractured tibiae were excised, fixed with 4% paraformaldehyde, decalcified with 20% EDTA, and embedded in paraffin to prepare 7-μm sections. Immunohistochemistry using polyclonal antibodies against human PDGF-A and -B chains was carried out by the avidin-biotin-peroxidase method. For in situ hybridization, we used digoxigenin-labeled single-stranded DNA probes specific for mouse PDGF receptors α and β generated by unidirectional polymerase chain reaction. In the inflammatory phase on days 2–4 after the fracture, mesenchymal cells gathering at the fracture site expressed the PDGF-B chain and β receptor mRNA. At the stage of cartilaginous callus formation on day 7, the immunoreactivity for PDGF-A and -B chains on proliferating and hypertrophic chondrocytes and the signals of α and β receptor mRNAs on proliferating chondrocytes became manifest. At the stage of bony callus and bone remodeling on days 14–21, the predominant expression of the PDGF-B chain and β receptor was observed on both osteoclasts and osteoblasts. On day 28, signals for PDGF ligand proteins and receptor mRNAs diminished. The coincidental localization of PDGF ligands and their receptors implies a paracrine and autocrine mechanism. Our data suggested that PDGF contributed in part to the promotion of the chondrogenic and osteogenic changes of mesenchymal cells from the early to the midphase of fracture healing; the functions mediated by the β receptor, including cell migration, might be prerequisites to the recruitment of mesenchymal cells in the initial step and to the interaction between osteoclasts and osteoblasts in the bone remodeling phase. Accepted: 2 June 1999  相似文献   

12.
Summary Serum-free supernatants from the human melanoma cell line G361 contain a factor that can potently suppress the generation of tumouricidal lymphokine-activated killer (LAK) cells in response to interleukin-2. To characterise the suppressive factor of tumour origin we performed a number of physicochemical and functional comparisons with another immunosuppressive protein, transforming growth factor (TGF). The bioactivity of tumour-derived suppressor factor (TDSF), assayed by suppression of LAK cell generation, was unaffected by a reducing agent but lost when denatured with a chaotropic agent. In contrast, TGF was inactivated by reduction but not denaturation. TDSF lost bioactivity in conditions of pH less than 4, whereas TGF showed no loss of activity. The TDSF moiety has an estimated pI of 4.3 and a molecular mass of 69–87 kDa. This differs from published values of pI 9.5, and 25 kDa molecular mass for TGF. Anti-TGF antiserum reversed the effects of TGF but did not affect the suppression of LAK cell generation caused by TDSF. These findings provide compelling evidence that the TDSF moiety is not TGF, and may be a novel immunoregulatory cytokine.  相似文献   

13.
Transforming growth factor-β (TGF-β) plays an important role in regulating hematopoiesis, inhibiting proliferation while stimulating differentiation when appropriate. We previously demonstrated that the type III TGF-β receptor (TβRIII, or betaglycan) serves as a novel suppressor of cancer progression in epithelial tumors; however, its role in hematologic malignancies is unknown. Here we demonstrate that TβRIII protein expression is decreased or lost in the majority of human multiple myeloma specimens. Functionally, restoring TβRIII expression in myeloma cells significantly inhibited cell growth, proliferation, and motility, largely independent of its ligand presentation role. In a reciprocal fashion, shRNA-mediated silencing of endogenous TβRIII expression enhanced cell growth, proliferation, and motility. Although apoptosis was not affected, TβRIII inhibited proliferation through induction of the cyclin-dependent kinase inhibitors p21 and p27. TβRIII further regulated myeloma cell adhesion, increasing homotypic myeloma cell adhesion while decreasing myeloma heterotropic adhesion to bone marrow stromal cells. Mechanistically, live cell imaging of myeloma and stroma cell cocultures revealed that TβRIII-mediated inhibition of heterotropic adhesion was associated with decreased duration of myeloma/bone marrow stromal cell interaction. These results suggest that loss of TβRIII expression during multiple myeloma progression contributes to disease progression through its functional effects on increased cell growth, proliferation, motility, and adhesion.  相似文献   

14.
Transforming growth factor- (TGF-) is a homodimeric polypeptide of 25 kDa, which regulates cell growth and differentiation and influences extracellular matrix metabolism. Using immunochemical techniques, we identified TGF- in the loops of Henle and the collecting and Bellini ducts of rat kidney and in the loops of Henle of chicken kidney. Furthermore, we detected two TGF--immunoreactive proteins on kidney blots of the rat of 12.5 and 47 kDa, and three on chicken kidney blots of 12.5, 34, and 47 kDa. We suggest that the precursor forms of rat and chicken TGF-2 or 3, chicken TGF-4, and the mature form of all of them are expressed in the collecting and Bellini ducts of rat kidney and the loops of-Henle of rat and chicken kidney.  相似文献   

15.
 After having established the specificity of the antibodies for the rat testis by western blot analysis, the potential target cells for transforming growth factors (TGFβs) were identified by immunohistochemical detection of both type I (TβRI) and type II (TβRII) transducing receptors for TGFβs in the adult rat testis in situ. Leydig cells showed a strong TβRII immunoreactivity whereas the TβRI staining was weak. Only TβRII was detectable in Sertoli cells. In germ cells, staining for TβRI was stronger than for TβRII and the expression of both receptors depended on the seminiferous cycle stage. TβRI first appeared in pachytene spermatocytes and was absent in elongated spermatids from stage XIV onwards. Labelling for TβRII was observed as early as the spermatogonia stage; it increased in pachytene spermatocytes at the onset of TβRI and disappeared in elongating spermatids from stage XI onwards. These results show that TGFβs can affect somatic cells functions and suggest that these factors are involved in the control of meiosis and early spermiogenesis, exerting a direct effect on germ cells. Accepted: 18 June 1998  相似文献   

16.
17.
18.
Summary Normal human mammary epithelial cells (HMEC) from different individual reduction mammoplasty specimens were all growth inhibited, and showed a flattened, elongated morphology in response to human recombinant transforming growth factor β1 (TGFβ). The degree of growth inhibition varied among specimens, but none of the normal HMEC maintained growth in the continued presence of TGFβ. The degree of growth inhibition also varied with cell age in vitro, cells closer to senescence being more sensitive. TGFβ sensitivity was additionally assayed in two established cell lines derived from one of the reduction mammoplasty specimens after exposure to benzo(a)pyrene. Although varying degrees of growth inhibition and morphologic changes were observed in the cell lines, both lines contained populations that maintained active growth in the presence of TGFβ. Subclones of these lines demonstrated a great plasticity in their growth response to TGFβ, with individual clones ranging from strongly growth inhibited to nearly unaffected. These results suggest that multiple factors influence the extent of TGFβ-induced growth effects on both normal and transformed mammary epithelial cells, and that some of these factors may act through epigenetic mechanisms. This work was supported by CA24844 from the National Institutes of Health, Bethesda, MD, and the Office of Energy Research, Office of Health and Environmental Research of the U.S. Department of Energy under contract DE-AC03-76SF00098.  相似文献   

19.
Summary The stimulatory effects of transforming growth factor β (TGF-β) on epidermal growth factor (EGF)-dependent growth of adult and newborn human fibroblasts were investigated. EGF-stimulated growth in low serum of dermal fibroblasts from a 41 year-old adult (HSF-41) was less than half that of newborn foreskin fibroblasts (HFF). The EGF-stimulated growth of HFF after 55 population doublings (HFF-55) was similarly reduced. The decreased growth response to EGF of fibroblasts, agedin vivo andin vitro appeared to result principally from a decreased sensitivity to EGF due to a decreased number and affinity of high affinity EGF receptors (H-EGFR). Pre-incubation of HSF-41 and HFF-55 with 25 pM TGF-β enhanced the growth responses of these cells to EGF and increased the levels of high affinity EGF-binding by these cells Thus, the stimulation by TGF-β of EGF-dependent growth of human fibroblasts agedin vivo orin vitro is mediated by increased levels of high affinity EGF binding. This research was supported in part by a grant-in-aid for scientific research (61480388) and a special project research grant to Okayama University from the Japanese Ministry of Education, Science and Culture. Editor's statement TGF beta interaction with its receptor is known to affect EGF receptors. In this paper a functional biological association is established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号