首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of extracellular fibrinolytic activity in untransformed 3T3 cell cultures depends on the growth state of the cells. Actively growing 3T3 cultures exhibit a relatively high level of fibrinolysis, which decreases progressively as the cells become confluent and density-inhibited. The low level of fibrinolytic activity in confluent 3T3 cultures is due to a diminution in secretion of plasminogen activator since the intracellular level of plasminogen activator remains high. The amount of plasminogen activator observed in growing 3T3 cultures varies depending upon whether the cells are passaged with trypsin/EDTA solution, or with Ca++ selective chelating agent, ethylene-bis (oxyethylenenitrilo) tetraacetic acid (EGTA). However, in cells passaged using either agent, the amount of plasminogen activator secreted is always greatest when the cells are actively growing and decreases thereafter. In contrast to confluent 3T3 cultures, dense cultures of SV40-virus transformed 3T3 cells continued to secrete relatively large amounts of plasminogen activator. The ability to decrease secretion of plasminogen activator as cells become dense may be an important characteristic of cells which demonstrate density-dependent inhibition of cell multiplication in vitro.  相似文献   

2.
Stimulation of postconfluent Swiss 3T3 cells in serum-free medium with 4.3 mM Ca2+ results in marked increases in both released and cell-associated plasminogen activator (PA). Increased release of PA commenced approximately 10 to 12 hours post-stimulation and continued to increase steadily until 48 hours at which time the stimulates cells (4.3 mM Ca2+) released approximately 14 times more PA than control cells (1.8 mM Ca2+). Sr2+, like Ca2+, also stimulates PA synthesis/release either in the presence or in the absence of 1.8 mM Ca2+ whereas an excess of Mg2+ inhibits Ca2+ stimulation. Supranormal [Pi] in the medium stimulates PA synthesis/release in the presence of 1.8 mM mM Ca2+. Further, optimal stimulation by 4.3 mM Ca2+ requires a normal level of Pi (1.0 mM). Elevation of medium [Ca2+] or [Pi] results in an enhanced uptake of Ca2+. The facts that cycloheximide treatment completely abolishes the Ca2+ stimulatory effect and that an increase in cell associated PA precedes release indicate that PA release is coupled to synthesis of new PA. Ca2+ stimulation of PA synthesis/release also requires continuous energy production and RNA as well as protein synthesis. A hypothesis is proposed to explain the relationship between stimulation of PA production and its enhanced release from cells stimulated by elevated [Ca2+] or [Pi] in the media. The possibility that PA release may be an example of the phenomenon of membrane shedding as opposed to secretion is discussed.  相似文献   

3.
Treatment of confluent Swiss 3T3 cells in serum-free medium with colchicine, a drug known to depolymerize microtubules, results in a dose-dependent increase in both released and cell-associated plasminogen activator levels. Other anti-microtubule drugs (vinblastine and nocodazole) are also active in stimulating plasminogen activator expression. In contrast, cytochalasin B, a microfilament-disruptive drug, has no effect. In addition, treatment with colchicine, vinblastine or nocodazole, but not cytochalasin B, also results in a dose-dependent induction of DNA synthesis in both confluent and quiescent sparse 3T3 cells in the absence of serum. Furthermore, colchicine treatment also mediates a marked morphologic change. Thus, disruption of microtubules may be sufficient to render 3T3 cells in an “activated” state characterized by morphologic alteration, enhanced plasminogen activator expression and induction of DNA synthesis.  相似文献   

4.
The tumor promoter, phorbol myristate acetate (PMA), stimulates plasminogen activator production and extracellular release in confluent Swiss 3T3 cells. Coordinated with the increased extracellular release is a redistribution of the activity into plasma membrane-enriched fractions and a shift in the predominant molecular weight species from 75,000 to 49,000 daltons. The evidence suggests that PMA induces the formation of the 49,000 dalton species which is preferentially located in plasma membrane-enriched fractions.  相似文献   

5.
Phorbol 12-myristate 13-acetate, 1-20 nM, induced the synthesis in HeLa cells of a 65 200 Mr tissue-type plasminogen activator, and of prostaglandin E2. Omission of Ca2+ from the incubation medium inhibited the induction of plasminogen activator synthesis by 40-60% and abolished the induction of prostaglandin E2 synthesis. Maximal plasminogen activator synthesis could be maintained at extracellular Ca2+ concentrations of approx. 0.1 mM, while maximal prostaglandin synthesis required at least 0.45-0.9 mM Ca2+. The induction of each factor was inhibited by 10-100 microM 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular C2+ mobilization. Prostaglandin synthesis, but not plasminogen activator synthesis, was also inhibited by 10-100 microM verapamil and nifedipine, which inhibit intracellular Ca2+ uptake via the so-called 'slow-channels' and by 0.5-10 microM trifluoperazine, an inhibitor of calmodulin. Neither plasminogen activator synthesis nor prostaglandin synthesis were stimulated by 5-50 microM 1-oleoyl-2-acetylglycerol or 1-250 microM 1,2-dioctanoylglycerol, alone and in combination with 50 nM-1 microM ionophore A23187. These results indicate that the synthesis of plasminogen activator and prostaglandins in HeLa cells is Ca2+-dependent, and that the Ca2+ requirements for each process are not identical. Thus, Ca2+ regulation of the production of tissue plasminogen activator and prostaglandin E2 occurs at multiple points in their biosynthetic pathways.  相似文献   

6.
Incubation of quiescent cultures of Swiss 3T3 cells with epidermal growth factor (EGF) caused an increase in c-myc mRNA. Under these conditions, EGF did not induce phosphoinositide turnover, formation of diacylglycerol, formation of inositol tris-, bis-, and monophosphates, protein kinase C activation, or Ca2+ mobilization. Although it has been reported that both protein kinase C and Ca2+ may be responsible for the platelet-derived growth factor- and fibroblast growth factor-induced increases in c-myc mRNA in Swiss 3T3 cells (Kaibuchi, K., Tsuda, T., Kikuchi, A., Tanimoto, T., Yamashita, T., & Takai, Y. (1986) J. Biol. Chem. 261, 1187-1192), these results indicate that neither protein kinase C nor Ca2+ is involved in the EGF-induced increase in c-myc mRNA, and that an unidentified system may be involved in this reaction.  相似文献   

7.
Endothelin, a novel vasoactive peptide derived from endothelial cells (Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988) Nature 332, 411-415), acts as a potent mitogen in Swiss 3T3 fibroblasts. The effect is dose-dependent with a half-maximal effect obtained at approximately 3 x 10(-11) M and is synergistically enhanced by a low concentration of insulin-like growth factor-I. Endothelin specifically binds to a single class of high affinity receptors in intact Swiss 3T3 cells and stimulates phospholipase C with the production of second messengers inositol trisphosphate and 1,2-diacylglycerol, leading to biphasic increases in the intracellular free Ca2+ concentration, as measured with a fluorescent indicator fura-2, phosphorylation of a putative cellular substrate of 80 kDa for protein kinase C, and transient expression of cellular protoonocogenes, c-fos and c-myc. Mitogenic effect of endothelin is markedly attenuated in phorbol ester-pretreated, protein kinase C-depleted cells. Endothelin-induced inositol phosphates production is not affected by removal of extracellular Ca2+, suggesting that endothelin-induced phospholipase C activation is not the result of stimulation of Ca2+ influx across the plasma membrane. These composite results indicate that the inositol lipid signaling pathway plays an important role in endothelin-induced mitogenesis in Swiss 3T3 fibroblasts. The mitogenic effect of endothelin is considerably smaller than that of bombesin, another well characterized mitogen acting through the inositol lipid pathway, despite comparable potencies in eliciting initial second messenger signals. In endothelin-treated cells, an increase in cellular 1,2-diacylglycerol content is transient, and cellular cyclic AMP content is reduced. By contrast, bombesin induces a more prolonged increase in cellular 1,2-diacylglycerol content and a slight increase in cellular cyclic AMP content. Because both 1,2-diacylglycerol and cyclic AMP are thought to serve as signals for promoting DNA synthesis in Swiss 3T3 fibroblasts, these differences in the signal generation may contribute to the differences in potencies between the two mitogens.  相似文献   

8.
We describe the effects of products of mononuclear phagocytes on the secretory activity of chondrocytes. The primary confluent cultures of rabbit articular chondrocytes were exposed to standard medium alone or enriched with conditioned medium obtained from cultures of rabbit peritoneal macrophages, the mouse macrophage cell line P388D1 or human blood mononuclear cells. Four markers of release were assessed, the neutral proteinases plasminogen activator and collagenase, the acid hydrolase beta-glucuronidase and prostaglandin E2, and the kinetics of their changes were monitored. Chondrocytes that were cultured in standard medium secreted large amounts of plasminogen activator, some beta-glucuronidase, but no collagenase, and released only minor amounts of prostaglandin E2. The addition of conditioned medium from rabbit macrophages induced a rapid release of large quantities of prostaglandin E2 and an abundant secretion of collagenase, while abolishing or strongly decreasing plasminogen activator secretion. In addition, beta-glucuronidase secretion was markedly enhanced. The decrease in secretion of plasminogen activator appeared to reflect a diminished production, since no evidence was found for the generation of inhibitors or for an accelerated extracellular breakdown of the enzyme. Conditioned media of the mouse and human mononuclear cells influenced the secretory activities of rabbit articular chondrocytes in a similar way, suggesting that the factor (or factors) acting on chondrocytes is produced by a variety of macrophages, and that its action is not species-restricted. The time course and concentration-dependence of the effects observed indicate that the secretion of plasminogen activator and collagenase are influenced in a strictly reciprocal fashion by the macrophage products. The release of prostaglandin E2 paralleled that of collagenase.  相似文献   

9.
To study the relationship between cell growth control, cell contact, and protein secretion, we examined the production of plasminogen activator, procollagen, and fibronectin by Chinese hamster ovary (CHO) fibroblasts, both as a function of position in the cell cycle and as a function of cell density. CHO fibroblasts that were synchronized at hourly intervals throughout the cell cycle by mitotic selection in an automated roller bottle apparatus secreted plasminogen activator only during the G2 and M phases of the cell cycle (10–14 h after mitotic selection). Cell-associated plasminogen activator activity was variable during G1 and S, but was greatly reduced during G2 and M. In contrast, secretion of the connective tissue matrix proteins, procollagen and fibronectin, was controlled by cell density rather than by cell cycle position. Type III procollagen and fibronectin were secreted throughout the cell cycle with no pronounced variations. Type I procollagen was not secreted by cycling cells and was observed in confluent cultures only after 24–48 h. To correlate these changes in protein secretion patterns with cell shape and contact, we used scanning electron microscopy (SEM) to study the appearance of CHO cells after mitotic selection. Actively dividing cells retained a high proportion of rounded, ruffled, and blebbed cells during all phases of the cell cycle. Only with increased cell density in contact-inhibited confluent cultures did most cells begin to flatten and spread. Thus, secretion of and attachment to extracellular matrix did not occur in rapidly dividing cells, but appeared to require the increased cell-cell contact and spreading that accompanies contact inhibition of growth. On the other hand, increased secretion of plasminogen activator was directly related to cell division and may be part of a sequence of events that allows cells growing in culture to loosen extracellular attachments in preparation for rounding and cytokinesis.  相似文献   

10.
Prostaglandin E1 (PGE1) caused a rapid and dose-dependent increase in cAMP levels, followed by elevation of c-myc mRNA levels and then increased DNA synthesis in quiescent cultures of Swiss 3T3 fibroblasts. The dose-response curves of PGE1 were nearly the same for each of these three processes. Both 8-bromo-cAMP and forskolin increased c-myc mRNA levels to 40-50% and DNA synthesis to 70-80% of those caused by a maximally effective dose of PGE1. Under the comparable conditions, PGE1 did not stimulate diacylglycerol formation or activate protein kinase C. However, PGE1 did elevate cytoplasmic free Ca2+ concentration as measured with the fluorescent Ca2+ indicator quin 2. 8-Bromo-cAMP and forskolin were inactive in this capacity. The Ca2+ ionophore A23187 increased the level of c-myc mRNA. Diacylglycerol and Ca2+ mediate the elevation of c-myc mRNA levels which is caused by platelet-derived growth factor and fibroblast growth factor (Kaibuchi, K., Tsuda, T., Kikuchi, A., Tanimoto, T., Yamashita, T., and Takai, Y. (1986) J. Biol. Chem. 261, 1187-1192). In contrast, the present results suggest that both cAMP and Ca2+ are involved in this PGE1-induced response in Swiss 3T3 cells.  相似文献   

11.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

12.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

13.
Proteose peptone (p.peptone) remarkably induced tissue plasminogen activator (t-PA) activity in the conditioned medium of confluently cultured human embryonic lung diploid fibroblast, IMR-90 cells, in a dose-dependent manner. t-PA activity correlated well with the amount of t-PA antigen found in the conditioned medium of IMR-90 cells stimulated by p.peptone. t-PA production by IMR-90 cells stimulated by p.peptone was dependent on extracellular Ca2+ concentration and maximum t-PA production required approximately 3.6 mM extracellular Ca2+. Conversely, elimination of Ca2+ from the culture medium by EGTA, Ca2+ chelate agent, strongly inhibited t-PA production induced by p.peptone. t-PA production induced by p.peptone was inhibited in a dose-dependent manner by Verapamil, which inhibits Ca2+ uptake through the slow channels and also by W-7, an inhibitor of calmodulin. These results suggested that influx of extracellular Ca2+ into IMR-90 cells was caused by p.peptone and induced t-PA production by the cells.  相似文献   

14.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

15.
The G1-S boundary of non-neoplastic cells requires extracellular Ca2+ for successful transition. Inositol 1,3,4,5-tetrakisphosphate but not inositol 1,4,5-trisphosphate can partially replace Ca2+ and stimulate the initiation of DNA synthesis of Ca2+-deprived T51B rat liver cells but only if sufficient extracellular Ca2+ (i.e., 0.075 mM) is present. The potent tumor promoter and protein kinase C activator 12-O-tetradecanoylphorbol acetate is also capable of replacing extracellular Ca2+ and partially stimulating the initiation of DNA synthesis. In addition, both inositol-1,3,4,5-tetrakisphosphate and 12-O-tetradecanoylphorbol acetate added together elicit a full DNA synthetic response.  相似文献   

16.
Changes in microsomal Na+, K+-, Mg2+- and Ca2+-ATPase activities during cell proliferation were examined in Chinese hamster V-79 (V-79) cells (normal cells) and human HeLaS-3 (HeLaS-3) cells (malignant cells). For V-79 cells, the Mg2+-ATPase activity per cell (pmol Pi/h/cell) in the confluent phase was higher than that in the logarithmically growing (log) phase. The amount of microsomal protein per cell was also high in the confluent phase. Specific activities (mumol Pi/h/mg protein) of Na+, K+-, Mg2+- and Ca2+-ATPase were significantly lower in the confluent phase than in the log phase. For HeLaS-3 cells, an increase in Ca2+-ATPase activity per cell was observed. The amount of microsomal protein per cell did not change between the log and confluent phase. The specific activity of Ca2+-ATPase in the confluent phase was also markedly higher than in the log phase. The relation between changes in ATPase activities and cell proliferation is discussed.  相似文献   

17.
Vasoactive intestinal contractor peptide (VIC), a novel member of the endothelin family, stimulated a rapid increase in the intracellular Ca2+ concentration in fura-2-loaded Swiss 3T3 cells. Sequential addition of VIC and endothelin-1 (ET1) demonstrated the induction of both homologous and heterologous desensitization. VIC was as potent as ET1 in displacing the binding of 125I-ET1 and in stimulating mitogenesis in Swiss 3T3 cells. These findings suggest that VIC and ET1 share a common receptor in Swiss 3T3 cells.  相似文献   

18.
Rat basophil leukemic (2H3) cells ( Siraganian , R.P., McGivney , A., Barsumian , E. L., Crews, F. T., Hirata , F., and Axelrod , J. (1982) Fed. Proc. 41, 30-34) loaded with fluorescent Ca2+ indicator quin 2 ( Tsien , R. Y. (1980) Biochemistry 19, 2396-2404) showed a rapid increase in free cytosol calcium concentration [( Ca]i) when histamine release was induced. Intracellular quin 2 concentrations up to 7 mM did not affect release of histamine in response to antigen (aggregated ovalbumin) or concanavalin A with cells primed with antigen-specific monoclonal IgE, or in response to Ca2+ ionophores. The [Ca]i increased from approximately 105 nM to a maximum of approximately 1200 nM within 2 to 3 min after antigenic stimulation and then declined slowly over 30 min toward the level in unstimulated cells. Histamine release was most rapid as [Ca]i reached the maximum value and then decreased continuously with [Ca]i over the subsequent 30 min. Neither the Ca signal nor histamine release was observed when the Ca2+ concentration in the medium [( Ca]o) was less than 50 microM, but both responses were restored on readdition of Ca2+ to 1 mM. The maximal Ca signal was obtained when [Ca]o was approximately greater than 1 mM and was half-maximal at [Ca]o congruent to 0.4 mM. In marked contrast [Ca]i in unstimulated cells varied very little with [Ca]o from 0.1 to 1 mM. Maintenance of the Ca signal required the continuous presence of stimulating ligand, external Ca2+, and the maintenance of cellular ATP; metabolic inhibitors blocked or reversed the Ca signal. La+ ions also caused a rapid and reversible block of the Ca signal and histamine release. The data are interpreted in a model in which the Ca signal is generated by a La3+-sensitive signal influx pathway that is functionally independent of the normal Ca2+ influx pathway in unstimulated cells, and that allows a 10-fold or greater increase in rate of Ca2+ entry. The Ca signal is maintained dynamically by the balance between the increased Ca2+ influx and active Ca2+ efflux across the plasma membrane.  相似文献   

19.
Swiss 3T3 cells express receptors for both the polypeptide epidermal growth factor (EGF) and the tetradecapeptide bombesin and respond mitogenically to these substances. These cells thus provide a system to analyze potential signal transduction pathways involved in mitogenic stimulation. Here we have determined and compared the early ionic responses elicited by EGF and bombesin and their relation to diacylglycerol (DG) and inositolphosphate (InsPn) production. Whereas EGF fails to cause any significant change in intracellular Ca2+, bombesin effectively induces prompt and transient Ca2+ mobilization from intracellular stores. Further support of the idea that these receptors utilize distinct signalling pathways comes from the measurements of cytoplasmic pH (pHi). As in most target cells, EGF induces a delayed (1 min) but sustained intracellular alkalinization that reaches a new steady state after approximately 10 min. Bombesin, in contrast, elicits a biphasic response; within seconds, a rapid but transient rise in pHi is observed, followed by a further slower sustained alkalinization. Inhibition of the Na+/H+ exchanger prevents both EGF as well as bombesin-induced alkalinization. However, under these conditions, bombesin evokes a rapid and sustained acidification related to the Ca2+ response. Apparently, bombesin initiates a Ca2(+)-dependent acidifying process immediately after binding of the hormone to its receptor. Furthermore, we could demonstrate that the bombesin-induced alkalinization depends on protein kinase C activation whereas the EGF response does not. Determination of the total DG and InsPn accumulation revealed that EGF is ineffective in stimulating phospholipase C-mediated production of these second messengers. In contrast, bombesin causes a rapid DG and InsPn production coinciding with the Ca2+ response and the first phase of the rise in pHi followed by a slower DG accumulation coinciding with the second alkalinization phase. Our results show that in Swiss 3T3 cells the bombesin receptor activates the hydrolysis of inositol lipids as a mechanism of signal transduction, which consequently causes changes in Ca2+i and pHi. Clearly, the EGF receptor utilizes different pathways to evoke mitogenesis and stimulates Na+/H+ exchange independently of DG production and protein kinase C activation.  相似文献   

20.
The stimulation of cultured bovine chromaffin cells with histamine induced a continuous catecholamine secretion (EC50 = 3 x 10(-7) M) via the H1 receptor, in addition to an initial catecholamine burst due to a nonspecific stimulatory effect at higher doses (greater than or equal to 10(-4) M). The continuous secretion showed little desensitization and lasted for more than 1 h. In fura-2-loaded cells, the stimulation with histamine evoked a transient rise of intracellular free Ca2+ concentration ([Ca2+]i) which lasted only for a few minutes and was followed by a sustained [Ca2+]i rise which continued for more than 20 min. The addition of an activator for the L-type voltage-sensitive Ca2+ channel, i.e., Bay K 8644 (1 microM), facilitated the sustained [Ca2+]i rise, as well as the secretion, whereas the addition of relatively high concentrations of Ca(2+)-channel blockers (10 microM) suppressed the sustained [Ca2+]i rise and part of the secretion. Removal of extracellular Ca2+ completely abolished continuous secretion and sustained [Ca2+]i rise. When the external Ca2+ level was elevated, both sustained [Ca2+]i rise and continuous secretion were enhanced in a similar Ca(2+)-dependent manner, showing saturation with around 1-3 mM Ca2+. This Ca2+ dependence was clearly different from that observed with high K+ and nicotine, which is mediated by the L-type Ca2+ channel, in which the responses showed little or no saturation when the Ca2+ level was increased. The results indicate that stimulation with histamine induces a continuous secretion via the H1 receptor, in addition to a transient and nonspecific secretion at higher doses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号