首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that can play important regulatory roles in many important biological processes. Although clustering patterns of miRNA clusters have been uncovered in animals, the origin and evolution of miRNA clusters in vertebrates are still poorly understood. Here, we performed comparative genomic analyses to construct 51 sets of orthologous miRNA clusters (SOMCs) across seven test vertebrate species, a collection of miRNA clusters from two or more species that are likely to have evolved from a common ancestral miRNA cluster, and used these to systematically examine the evolutionary characteristics and patterns of miRNA clusters in vertebrates. We found that miRNA clusters are continuously generated, and most of them tend to be conserved and maintained in vertebrate genomes, although some adaptive gains and losses of miRNA cluster have occurred during evolution. Furthermore, miRNA clusters appeared relatively early in the evolutionary history might suffer from more complicated adaptive gain-and-loss than those young miRNA clusters. Detailed analysis showed that genomic duplication events of ancestral miRNAs or miRNA clusters are likely to be major driving force and apparently contribute to origin and evolution of miRNA clusters. Comparison of conserved with lineage-specific miRNA clusters revealed that the contribution of duplication events for the formation of miRNA cluster appears to be more important for conserved miRNA clusters than lineage-specific. Our study provides novel insights for further exploring the origins and evolution of miRNA clusters in vertebrates at a genome scale.  相似文献   

2.
3.
The clustering propensity of microRNA genes is a common biological phenomenon in various animal and plant species. To gain novel insight into genomic organization and potential functional heterogeneities of miRNA clusters in vertebrates from a genome scale, we used large scale data and presented a comprehensive analysis to examine various features of genomic organization of miRNA clusters across seven vertebrates by a combination of comparative genomics and bioinformatics approaches. The results of pair-wise distance analysis of same-strand consecutive miRNAs suggested that the fractions of the miRNA gene pairs are higher at relatively short pair-wise distances than those of protein-coding genes and other non-coding RNA genes. Especially relatively small number of miRNAs is more clustered at very short pair-wise distances than expected at random. We further observed significant difference between real miRNA clusters and randomly organized clusters for different aspects, including higher overlap of target genes, fewer seed types and significant enrichment in diseases. However, the extent of these features of clustered miRNAs has a different tendency and largely depends on inter-miRNA distances because of diverse clustering propensity of miRNAs in vertebrates, suggesting that this cooperated function or cooperative effects between miRNAs in clusters perhaps be affected by inter-miRNA distances.  相似文献   

4.

Background

MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially.

Results

We developed a general Bayesian method for the inference of miRNA target sites, in which, for each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show that our general method performs at least as well as the most accurate methods available to date, including ones specifically tailored for target prediction in fly. An important novel feature of our model is that it explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human 3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR. To characterize miRNA function beyond the predicted lists of targets we further present a method to infer significant associations between the sets of targets predicted for individual miRNAs and specific biochemical pathways, in particular those of the KEGG pathway database. We show that this approach retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known miRNAs in cell growth and in development.

Conclusion

We have presented a Bayesian target prediction algorithm without any tunable parameters, that can be applied to sequences from any clade of species. The algorithm automatically infers the phylogenetic distribution of functional sites for each miRNA, and assigns a posterior probability to each putative target site. The results presented here indicate that our general method achieves very good performance in predicting miRNA target sites, providing at the same time insights into the evolution of target sites for individual miRNAs. Moreover, by combining our predictions with pathway analysis, we propose functions of specific miRNAs in nervous system development, inter-cellular communication and cell growth. The complete target site predictions as well as the miRNA/pathway associations are accessible on the ElMMo web server.  相似文献   

5.
6.
7.
8.

Background

Natural or endogenous sense/antisense miRNAs, located on sense and antisense strands in the same genomic region, respectively, are detected recently. However, little is known about these miRNA pairs, especially for their distributions in different animal species. We herein present systematic analysis of them in human, mouse and rat miRNAs, and their expression patterns based on deep sequencing datasets.

Methods and results

The phenomenon of miRNA–miRNA interaction could be detected in different animal species. The common miRNAs pairs were found across species. These miRNA pairs could form miRNA:miRNA duplex with complete complementary structure, and were prone to be located on specific chromosomes. They might be homologous miRNA genes (especially in human), or clustered in a gene cluster (especially in rat), or simultaneously detected in different genomic regions due to multicopy pre-miRNAs. Remarkably, some miRNA pairs, located in different genomic regions, also showed complementarity as well as endogenous sense/antisense miRNAs. Based on published deep sequencing datasets, one member of miRNA pairs always was abundantly expressed, whereas another was quite rare. Rare common target mRNAs of these miRNA pairs were predicted.

Conclusions

Interaction between miRNAs and significant expression divergence implied complex potential mutual regulatory pattern in the miRNA world. The study would enrich miRNA regulatory network.  相似文献   

9.
10.
MicroRNAs (miRNAs) and copy number variations (CNVs) represent two classes of newly discovered genomic elements that were shown to contribute to genome plasticity and evolution. Recent studies demonstrated that miRNAs and CNVs must have co-evolved and interacted in an attempt to maintain the balance of the dosage sensitive genes and at the same time increase the diversity of dosage non-sensitive genes, contributing to species evolution. It has been previously demonstrated that both the number of miRNAs that target genes found in CNV regions as well as the number of miRNA binding sites are significantly higher than those of genes found in non-CNV regions. These findings raise the possibility that miRNAs may have been created under evolutionary pressure, as a mechanism for increasing the tolerance to genome plasticity. In the current study, we aimed in exploring the differences of miRNAs-CNV functional interactions between human and seven others species. By performing in silico whole genome analysis in eight different species (human, chimpanzee, macaque, mouse, rat, chicken, dog and cow), we demonstrate that miRNAs targeting genes located within CNV regions in humans have special functional characteristics that provide an insight into the differences between humans and other species.  相似文献   

11.
MicroRNAs have been identified and analyzed in various model species, but an investigation of miRNAs in nonmodel species is required for a more complete understanding of miRNA evolution. In this study, we investigated the miRNAs of the nonmodel species Triops cancriformis (tadpole shrimp), a “living fossil,” whose morphological form has not changed in almost 200 million years. Dramatic ontogenetic changes occur during its development. To clarify the evolution of miRNAs, we comparatively analyzed its miRNAs and the components of its RNAi machinery. We used deep sequencing to analyze small RNA libraries from the six different developmental stages of T. cancriformis (egg, first–fourth instars, and adult), and also analyzed its genomic DNA with deep sequencing. We identified 180 miRNAs (87 conserved miRNAs and 93 novel candidate miRNAs), and deduced the components of its RNAi machinery: the DICER1, AGO1–3, PIWI, and AUB proteins. A comparative miRNA analysis of T. cancriformis and Drosophila melanogaster showed inconsistencies in the expression patterns of four conserved miRNAs. This suggests that although the miRNA sequences of the two species are very similar, their roles differ across the species. An miRNA conservation analysis revealed that most of the conserved T. cancriformis miRNAs share sequence similarities with those of arthropods, although T. cancriformis is called a “living fossil.” However, we found that let-7 and DICER1 of T. cancriformis are more similar to those of the vertebrates than to those of the arthropods. These results suggest that miRNA systems of T. cancriformis have evolved in a unique fashion.  相似文献   

12.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
15.
16.
17.
MicroRNAs (miRNAs) control many important aspects of plant development, suggesting these molecules may also have played key roles in the evolution of developmental processes in plants. However, evolutionary-developmental (evo-devo) studies of miRNAs have been held back by technical difficulties in gene identification. To help solve this problem, we have developed a two-step procedure for the efficient identification of miRNA genes in any plant species. As a test case, we have studied the evolution of the MIR164 family in the angiosperms. We have identified novel MIR164 genes in three species occupying key phylogenetic positions and used these, together with published sequence data, to partially reconstruct the evolution of the MIR164 family since the last common ancestor of the extant flowering plants. We use our evolutionary reconstruction to discuss potential roles for MIR164 genes in the evolution of leaf shape and carpel closure in the angiosperms. The techniques we describe may be applied to any miRNA family and should thus enable plant evo-devo to begin to investigate the contributions miRNAs have made to the evolution of plant development.  相似文献   

18.
The genome sequences of Phaeodactylum tricornutum, Thalassiosira pseudonana, and Cyanidioschyzon merolae have provided significant evidence for the secondary endosymbiosis of diatoms in regard to the genome. Yet little about their relationships in regard to gene regulation pattern, such as microRNA (miRNA), has been reported. Using a homology search based on genomic sequences, 13, 3, and 7 predicted miRNA genes were found in genomes from P. tricornutum, T. pseudonana, and C. merolae, respectively. Of the 23 miRNA genes, 18 had homology with animal miRNAs, implying that they are ancestral miRNAs. A phylogenetic tree based on common miRNA families shared by these three unicellular algae, higher plants, and animals showed that P. tricornutum shared most miRNAs with animals. The phylogenetic tree also showed that C. merolae shared more miRNAs with plants than did the two diatoms, and the majority of its miRNAs were shared with the two diatoms. Our results were consistent with diatoms originating from a secondary endosymbiosis.  相似文献   

19.
It is known that the conservation of protein-coding genes is associated with their sequences both various species, such as animals and plants. However, the association between microRNA (miRNA) conservation and their sequences in various species remains unexplored. Here we report the association of miRNA conservation with its sequence features, such as base content and cleavage sites, suggesting that miRNA sequences contain the fingerprints for miRNA conservation. More interestingly, different species show different and even opposite patterns between miRNA conservation and sequence features. For example, mammalian miRNAs show a positive/negative correlation between conservation and AU/GC content, whereas plant miRNAs show a negative/positive correlation between conservation and AU/GC content. Further analysis puts forward the hypothesis that the introns of protein-coding genes may be a main driving force for the origin and evolution of mammalian miRNAs. At the 5′ end, conserved miRNAs have a preference for base U, while less-conserved miRNAs have a preference for a non-U base in mammals. This difference does not exist in insects and plants, in which both conserved miRNAs and less-conserved miRNAs have a preference for base U at the 5′ end. We further revealed that the non-U preference at the 5′ end of less-conserved mammalian miRNAs is associated with miRNA function diversity, which may have evolved from the pressure of a highly sophisticated environmental stimulus the mammals encountered during evolution. These results indicated that miRNA sequences contain the fingerprints for conservation, and these fingerprints vary according to species. More importantly, the results suggest that although species share common mechanisms by which miRNAs originate and evolve, mammals may develop a novel mechanism for miRNA origin and evolution. In addition, the fingerprint found in this study can be predictor of miRNA conservation, and the findings are helpful in achieving a clearer understanding of miRNA function and evolution.  相似文献   

20.
Lineage-specific microRNA (miRNA) families may contribute to developmental novelties during evolution. However, little is known about the origin and evolution of new miRNA families. We report evidence of an Alu-mediated rapid expansion of miRNA genes in a previously identified primate-specific miRNA family, drawn from sequencing and comparative analysis of 9 diverse primate species. Evolutionary analysis reveals similar divergence among miRNA copies whether they are within or between species, lineage-specific gain and loss of miRNAs, and gene pseudolization in multiple species. These observations support a birth-and-death process of miRNA genes in this family, implicating functional diversification during primate evolution. In addition, both secondary structure conservation and reduced single nucleotide polymorphisms density attest to functional constraint of this family in primates. Finally, we observed preferential expression of miRNAs in human placenta and fetal brain, suggesting a functional importance of this family for primate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号