首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

2.
The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity.  相似文献   

3.
BackgroundUnderstanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers.MethodsWe designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF).ResultsThe structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups.ConclusionAlteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols.General significanceThe changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients.  相似文献   

5.
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been identified as one of the potentially critical effector functions underlying the clinical efficacy of some therapeutic immunoglobin G1 (IgG1) antibodies. It has been well established that higher levels of afucosylated N-linked glycan structures on the Fc region enhance the IgG binding affinity to the FcγIIIa receptor and lead to increased ADCC activity. However, whether terminal galactosylation of an IgG1 impacts its ADCC activity is less understood. Here, we used a new strategy for glycan enrichment and remodeling to study the impact of terminal galactose on ADCC activity for therapeutic IgG1s. Our results indicate that the degree of influence of terminal galactose on in vitro ADCC activity depends on the presence or absence of the core fucose, which is typically linked to the first N-acetyl glucosamine residue of an N-linked glycosylation core structure. Specifically, terminal galactose on afucosylated IgG1 mAbs enhanced ADCC activity with impact coefficients (ADCC%/Gal%) more than 20, but had minimal influence on ADCC activity on fucosylated structures with impact coefficient in the range of 0.1–0.2. Knowledge gained here can be used to guide product and process development activities for biotherapeutic antibodies that require effector function for efficacy, and also highlight the complexity in modulating the immune response through N-linked glycosylation of antibodies.  相似文献   

6.
N‐linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two‐step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full‐factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β‐gal, while FcγRIIIa binding is affected by afuco mono/bi and β‐gal. CDC, in contrast, is affected by β‐gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181–1192, 2016  相似文献   

7.
Ohl C  Albach C  Altevogt P  Schmitz B 《Biochimie》2003,85(6):565-573
N-glycans of the mouse glycoprotein HSA and its human analogue CD24 from lymphoblastoma, neuroblastoma and astrocytoma cell lines as well as from mouse brain homogenate were analysed and compared to each other and to the N-glycosylation pattern of total glycoproteins from mouse and human brain. The N-glycans were released from PVDF-blotted HSA or CD24 and separated on Carbograph SPE into neutral and acid glycans. The naturally neutral glycan fraction and the fraction of glycans rendered neutral after neuraminidase treatment were analysed without further purification by MALDI-MS. In each fraction, about 25 molecular ions with an intensity >10% of the base peak were identified which corresponded to glycans with distinct isobaric monosaccharide compositions. Comparison of the neutral and desialylated glycans revealed some similarities between the samples analysed, but also clear differences. HSA and CD24 from all cell lines express almost no neutral N-glycans with two or more fucose in contrast to brain HSA and glycoproteins from mouse and human brain. The lack of extensive fucosylation was also observed for desialylated glycans of HSA and CD24 from all cell lines analysed except for CD24 from a human neuroblastoma cell line which exhibits like total human and mouse brain glycoproteins a large variety of highly fucosylated, higher branched N-glycans. HSA from mouse brain carries in addition desialylated non-fucosylated glycans of high abundance which were detected, if at all, only at low intensity in all other samples analysed suggesting that they may be implicated in specific functions of mouse brain HSA. Therefore, a rapid assessment of similarities or differences between glycosylation patterns of a glycoprotein isolated from different sources is possible using methods as described here.  相似文献   

8.
《MABS-AUSTIN》2013,5(3):562-570
Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.  相似文献   

9.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

10.
Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.  相似文献   

11.
Prostate-specific antigen (PSA), the tumor marker currently used for prostate cancer (PCa), is not specific enough to distinguish between PCa and benign prostate hyperplasia (BPH). Glycan processing is normally perturbed in tumors, therefore we investigated whether changes in glycosylation of PSA could be useful diagnostic indicators. Previously we determined that the glycosylation of PSA secreted by the tumor prostate cell line LNCaP differs significantly from that of PSA from seminal plasma (normal control). We therefore undertook a detailed glycan analysis of PSA derived from sera from PCa patients and, importantly, established that the glycosylation of the PCa serum PSA was significantly different from the PSA from the LNCaP cell line. In comparison with seminal plasma PSA, the fucose content of PSA from the PCa patient serum was significantly lower and there was a decrease in alpha2,3-linked sialic acid. Differences in the glycosylation of PSA derived from PCa patients' sera, seminal plasma, and LNCaP cells were further established by lectin detection, glycosylation immunosorbent assay, and two-dimensional electrophoresis. We also investigated whether the impact of glycosylation changes initiated by the tumor was reflected in the serum glycome. By comparing the glycans released from the total glycoproteins in PCa patient serum with those of normal serum we found an increase in the proportion of sialyl-Lewis x structures. Further analysis of the glycosylation of PSA from PCa and BPH sera will be required in order to determine the utility of these glycan differences to discriminate specifically between benign and malignant prostate states.  相似文献   

12.
Glycosylation of the Fc region of IgG has a profound impact on the safety and clinical efficacy of therapeutic antibodies. While the biantennary complex-type oligosaccharide attached to Asn297 of the Fc is essential for antibody effector functions, fucose and outer-arm sugars attached to the core heptasaccharide that generate structural heterogeneity (glycoforms) exhibit unique biological activities. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for the development and quality control of therapeutic antibodies, and glycan profiles of the Fc are recognized as critical quality attributes. In the past decade our understanding of the influence of glycosylation on the structure/function of IgG-Fc has grown rapidly through X-ray crystallographic and nuclear magnetic resonance studies, which provides possibilities for the design of novel antibody therapeutics. Furthermore, the chemoenzymatic glycoengineering approach using endoglycosidase-based glycosynthases may facilitate the development of homogeneous IgG glycoforms with desirable functionality as nextgeneration therapeutic antibodies. Thus, the Fc glycans are fertile ground for the improvement of the safety, functionality, and efficacy of therapeutic IgG antibodies in the era of precision medicine.  相似文献   

13.
Rapid production of recombinant human IgG with improved antibody dependent cell‐mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK‐293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes ~7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N‐linked glycosylation pathway of HEK‐293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core‐fucose. IgG1 transiently produced in kifunensine‐ treated HEK‐293F cells has improved affinity for the FcγRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells. Biotechnol. Bioeng. 2010; 105: 350–357. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation, and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of intravenous IgG requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of intravenous IgG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully disialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro-inflammatory to anti-inflammatory activity of the Fc.  相似文献   

15.
A glycomic approach is developed to identify oligosaccharide markers for ovarian cancer by rapidly profiling globally released oligosaccharides. Glycoproteins shed by cancer cells are found in the supernatant (or conditioned media) of cultured cells. In this approach, shed glycoproteins are profiled for their oligosaccharide content using beta-elimination conditions. Changes in glycosylation are monitored by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Because shed glycoproteins would also be found in serum, similar glycan profiling was performed to observe potential oligosaccharide markers. Oligosaccharide profiling data on a limited set of patient and normal serum samples were studied to determine potential glycan markers in ovarian cancer. We were able to demonstrate the presence of at least 15 unique serum glycan markers in all patients but absent in normal individuals. To determine the structure of the glycan biomarkers, a number of the ions were isolated and further analyzed using infrared multiphoton dissociation (IRMPD). One major advantage of this approach is that glycans are examined directly from patient sera without the need to obtain cancer biopsy specimens or to purify glycosylated proteins from these specimens.  相似文献   

16.
Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.  相似文献   

17.
For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal (“afucosylation”). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.  相似文献   

18.
Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.  相似文献   

19.
Antibodies contain a conserved glycosylation site that has emerged as a target for the modulation of antibody effector functions. The crystal structure of a biosynthetic intermediate of human IgG1, bearing immature oligomannose-type glycans and reported to display increased antibody-dependent cellular cytotoxicity, demonstrates that glycan engineering can bias the Fc to an open conformation primed for receptor binding.  相似文献   

20.
Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号