首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.  相似文献   

2.
Chow KP  Qiu JT  Lee JM  Hsu SL  Yang SC  Wu NN  Huang W  Wu TS 《PloS one》2012,7(3):e33152
Peripheral CD8(+) T cells are defective in both IL-15 and IL-15Rα knock-out (KO) mice; however, whether IL-15/IL-15Rα deficiency has a similar effect on CD8 single-positive (SP) thymocytes remains unclear. In this study, we investigated whether the absence of IL-15 transpresentation in IL-15Rα KO mice results in a defect in thymic CD8 single positive (SP) TCR(hi) thymocytes. Comparison of CD8SP TCR(hi) thymocytes from IL-15Rα KO mice with their wild type (WT) counterparts by flow cytometry showed a significant reduction in the percentage of CD69(-) CD8SP TCR(hi) thymocytes, which represent thymic premigrants. In addition, analysis of in vivo 5-bromo-2-deoxyuridine (BrdU) incorporation demonstrated that premigrant expansion of CD8SP TCR(hi) thymocytes was reduced in IL-15Rα KO mice. The presence of IL-15 transpresentation-dependent expansion in CD8SP TCR(hi) thymocytes was assessed by culturing total thymocytes in IL-15Rα-Fc fusion protein-pre-bound plates that were pre-incubated with IL-15 to mimic IL-15 transpresentation in vitro. The results demonstrated that CD8SP thymocytes selectively outgrew other thymic subsets. The contribution of the newly divided CD8SP thymocytes to the peripheral CD8(+) T cell pool was examined using double labeling with intrathymically injected FITC and intravenously injected BrdU. A marked decrease in FITC(+) BrdU(+) CD8(+) T cells was observed in the IL-15Rα KO lymph nodes. Through these experiments, we identified an IL-15 transpresentation-dependent proliferation process selective for the mature CD8SP premigrant subpopulation. Importantly, this process may contribute to the maintenance of the normal peripheral CD8(+) T cell pool.  相似文献   

3.
Class I MHC-restricted, HSV-1-specific CD8(+) cytolytic T lymphocyte (CTL) function is rarely detected in lymphocytes isolated directly from the lymph node draining the site of infection. However, culture in vitro for 24 to 72 h in the absence of exogenous antigen results in the development of easily detectable levels of HSV-1-specific CTL effectors. The inability to detect virus-specific CTL in HSV-1-infected mice is not well understood. However, since the in vitro culture of HSV-1-immune lymphocytes results in the transition to CTL function, studies of the changes occurring to the CD8(+) T cell subpopulation may provide important insights into the development of virus-specific CTL. Therefore, the phenotypic changes taking place in the CD8(+) population of T cells from draining popliteal lymph nodes of HSV-1-infected C57BL/6 (B6) mice were investigated, focusing on changes in the expression of cell surface markers associated with T lymphocyte activation. The results demonstrate an increase in the percentage of CD8(+) T cells expressing the activation markers CD44 and CD25 in parallel with the acquisition of HSV-specific CTL effector function. Cytolytic function was found exclusively within the CD8(+) CD44(hi) CD25(hi) fraction of cells in culture, but, surprisingly, was not detectable in CD8(+) CD44(hi) CD25(lo) T cells. This suggested that the acquisition of high levels of the high-affinity IL-2 receptor was closely linked to cytolytic function and may define an important developmental stage in the transition from noncytolytic to cytolytic effector cell. In support of this, CD8(+) CD25(hi) T cells isolated from the regional lymph node exhibited direct ex vivo cytolytic function, indicating that cytolytic effector cells were present in the lymph node, but must emigrate rapidly after attaining this level of differentiation.  相似文献   

4.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

5.
Natural killer cells are important cytolytic cells in innate immunity. We have characterized human NK cells of spleen, lymph nodes, and tonsils. More than 95% of peripheral blood and 85% of spleen NK cells are CD56(dim)CD16(+) and express perforin, the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, as well as in part killer cell Ig-like receptors (KIRs). In contrast, NK cells in lymph nodes have mainly a CD56(bright)CD16(-) phenotype and lack perforin. In addition, they lack KIRs and all NCR expression, except low levels of NKp46. The NK cells of tonsils also lack perforin, KIRs, NKp30, and CD16, but partially express NKp44 and NKp46. Upon IL-2 stimulation, however, lymph node and tonsilar NK cells up-regulate NCRs, express perforin, and acquire cytolytic activity for NK-sensitive target cells. In addition, they express CD16 and KIRs upon IL-2 activation, and therefore display a phenotype similar to peripheral blood NK cells. We hypothesize that IL-2 can mobilize the NK cells of secondary lymphoid tissues to mediate natural killing during immune responses. Because lymph nodes harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized perforin(-) NK cell compartment in lymph nodes and related tissues probably outnumbers perforin(+) NK cells. These results also suggest secondary lymphoid organs as a possible site of NK cell differentiation and self-tolerance acquisition.  相似文献   

6.
The role of IL-22-producing CD4(+) T cells in intracellular pathogen infections is poorly characterized. IL-22-producing CD4(+) T cells may express some effector molecules on the membrane, and therefore synergize or contribute to antimicrobial effector function. This hypothesis cannot be tested by conventional approaches manipulating a single IL-22 cytokine at genetic and protein levels, and IL-22(+) T cells cannot be purified for evaluation due to secretion nature of cytokines. In this study, we surprisingly found that upon activation, CD4(+) T cells in Mycobacterium tuberculosis-infected macaques or humans could evolve into T effector cells bearing membrane-bound IL-22 after de novo IL-22 production. Membrane-bound IL-22(+) CD4(+) T effector cells appeared to mature in vivo and sustain membrane distribution in highly inflammatory environments during active M. tuberculosis infection. Near-field scanning optical microscopy/quantum dot-based nanoscale molecular imaging revealed that membrane-bound IL-22, like CD3, distributed in membrane and engaged as ~100-200 nm nanoclusters or ~300-600 nm nanodomains for potential interaction with IL-22R. Importantly, purified membrane-bound IL-22(+) CD4(+) T cells inhibited intracellular M. tuberculosis replication in macrophages. Our findings suggest that IL-22-producing T cells can evolve to retain IL-22 on membrane for prolonged IL-22 t(1/2) and to exert efficient cell-cell interaction for anti-M. tuberculosis effector function.  相似文献   

7.
The IL-7Rα single nucleotide polymorphism rs6897932 is associated with an increased risk for multiple sclerosis (MS). IL-7Rα is a promising candidate to be involved in autoimmunity, because it regulates T cell homeostasis, proliferation, and antiapoptotic signaling. However, the exact underlying mechanisms in the pathogenesis of MS are poorly understood. We investigated whether CD4 and CD8 lymphocyte subsets differed in IL-7Rα expression and functionality in 78 MS patients compared with 59 healthy controls (HC). A significantly higher frequency of IL-7Rα(+) CD8 effector memory (CD8EM) was found in MS. Moreover, IL-7Rα membrane expression was significantly increased in MS in naive and memory CD8 (all p < 0.05) with a similar trend in CD8EM (p = 0.055). No correlation was found between the expression level or frequency of IL-7Rα(+)CD8(+) and rs6897932 risk allele carriership. Upon IL-7 stimulation, MS patients had stronger STAT5 activation in CD8EM compared with HC. IL-7 stimulation had a differential effect on both mRNA and protein expression of granzyme A and granzyme B between MS and HC. Stainings of different lesions in postmortem MS brain material showed expression of IL-7 and CD8(+)IL-7Rα(+) in preactive, but not in active, demyelinating MS lesions, indicating involvement of IL-7Rα(+) lymphocytes in lesion development. The intralesional production of IL-7 in combination with the lower threshold for IL-7-induced cytotoxicity in MS may enhance the pathogenicity of these CD8 T cells. This is of special interest in light of the established demyelinating and cytotoxic actions of granzyme A.  相似文献   

8.
MRL lpr/lpr mice spontaneously develop a severe autoimmune lupus syndrome characterized by strong autoantibody production and massive lymphoproliferation, in which IFN-gamma plays a major pathogenic effect. The role of the IFN-gamma-inducing cytokine IL-18 in the autoimmune syndrome of lpr/lpr mice has been investigated. In response to IL-18, lymph node cells of lpr/lpr mice produce significant amounts of IFN-gamma and proliferate more potently as compared with cells from +/+ mice. Cells likely responsible for such hyperresponsiveness to IL-18 include NK cells and the CD4(+)/CD8(+) self-reactive T lymphocytes characteristically present in lymph nodes of lpr/lpr mice. Analysis of the expression of IL-18R complex revealed that mRNA for the IL-18R alpha-chain is constitutively expressed at similar level both in +/+ and lpr/lpr lymphocytes. In contrast, the expression of the accessory receptor chain IL-18R beta is low in unstimulated +/+ cells but significantly high in lpr/lpr cells. Thus, the abnormally high expression of the IL-18R chain IL-18R beta could be one of the causes of the hyperresponsiveness of lpr/lpr cells to IL-18 at the basis of consequent enhancement of IFN-gamma production and development of IFN-gamma-dependent autoimmune pathology.  相似文献   

9.
Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes.  相似文献   

10.
Protection against malaria often decays in the absence of infection, suggesting that protective immunological memory depends on stimulation. Here we have used CD4(+) T cells from a transgenic mouse carrying a T cell receptor specific for a malaria protein, Merozoite Surface Protein-1, to investigate memory in a Plasmodium chabaudi infection. CD4(+) memory T cells (CD44(hi)IL-7Rα(+)) developed during the chronic infection, and were readily distinguishable from effector (CD62L(lo)IL-7Rα(-)) cells in acute infection. On the basis of cell surface phenotype, we classified memory CD4(+) T cells into three subsets: central memory, and early and late effector memory cells, and found that early effector memory cells (CD62L(lo)CD27(+)) dominated the chronic infection. We demonstrate a linear pathway of differentiation from central memory to early and then late effector memory cells. In adoptive transfer, CD44(hi) memory cells from chronically infected mice were more effective at delaying and reducing parasitemia and pathology than memory cells from drug-treated mice without chronic infection, and contained a greater proportion of effector cells producing IFN-γ and TNFα, which may have contributed to the enhanced protection. These findings may explain the observation that in humans with chronic malaria, activated effector memory cells are best maintained in conditions of repeated exposure.  相似文献   

11.
Lee WW  Shin MS  Kang Y  Lee N  Jeon S  Kang I 《Cytokine》2012,58(3):332-335
The IL-7 receptor alpha (IL-7Rα) is the high affinity receptor for IL-7 which is essential for T cell homeostasis. We recently reported an age-associated expansion of human effector memory (EM) CD8(+) T cells expressing IL-7Rα low (IL-7Rα(low)), which could be detrimental to hosts by occupying "immunological space". We investigated the potential mechanisms for this phenomenon, focusing on cytomegalovirus (CMV) infection and INF-α. In the elderly (age ≥ 65), CMV infection was associated with a decreased frequency of na?ve CD8(+) T cells as well as with an increased frequency of total EM and IL-7Rα(low) EM CD8(+) T cells. However, in the young (age ≤ 40), this viral infection was associated only with an increased frequency of IL-7Rα(low) EM CD8(+) T cells. There was no association found between CMV immune status and plasma levels of IFN-α. In CMV-infected young and elderly people, INF-α levels had no correlation with the frequency of IL-7Rα(low) EM CD8(+) T cells although this cytokine levels correlated with the frequency of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in CMV-uninfected elderly people. Our findings suggest that the effect of CMV infection on the frequency of CD8(+) T cell subsets may begin with IL-7Rα(low) EM CD8(+) T cells and spread to other subsets with aging. Also, IFN-α could be associated with the expansion of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in the CMV-uninfected elderly.  相似文献   

12.
Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S) products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+) cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+)MHC-II(-)), but they did not impact the ability of antigen presenting cells (APC) to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+), Ym-1(+) alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi) cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.  相似文献   

13.
The bactericidal/permeability-increasing protein (BPI) is thought to play an important role in killing and clearance of Gram-negative bacteria and the neutralization of endotoxin. A possible role for BPI in clearance of cell-free endotoxin has also been suggested based on studies with purified endotoxin aggregates and blood monocytes. Because the interaction of BPI with cell-free endotoxin, during infection, occurs mainly in tissue and most likely in the form of shed bacterial outer membrane vesicles ("blebs"), we examined the effect of BPI on interactions of metabolically labeled ([(14)C]-acetate) blebs purified from Neisseria meningitidis serogroup B with either human monocyte-derived macrophages or monocyte-derived dendritic cells (MDDC). BPI produced a dose-dependent increase (up to 3-fold) in delivery of (14)C-labeled blebs to MDDC, but not to monocyte-derived macrophages in the presence or absence of serum. Both, fluorescently labeled blebs and BPI were internalized by MDDC under these conditions. The closely related LPS-binding protein, in contrast to BPI, did not increase association of the blebs with MDDC. BPI-enhanced delivery of the blebs to MDDC did not increase cell activation but permitted CD14-dependent signaling by the blebs as measured by changes in MDDC morphology, surface expression of CD80, CD83, CD86, and MHC class II and secretion of IL-8, RANTES, and IP-10. These findings suggest a novel role of BPI in the interaction of bacterial outer membrane vesicles with dendritic cells that may help link innate immune recognition of endotoxin to Ag delivery and presentation.  相似文献   

14.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

15.
The phagocyte NADPH oxidase is a multicomponent enzyme complex mediating microbial killing. We find that NADPH oxidase p47(phox)-deficient (p47(phox-/-)) chronic granulomatous disease (CGD) mice develop lymph node hyperplasia even without obvious infection, where increased number of T and B lymphocytes is associated with increased percent of na?ve cells and a lower T : B cell ratio than wild type. Paradoxically, despite lymphoid hyperplasia in vivo, when lymphocytes are placed in culture, p47(phox-/-) CD8(+) lymphocytes progress more rapidly to apoptosis than wild type. This is associated in cultured p47(phox-/-) CD8(+) lymphocytes with the induction of proapoptotic Bim and Puma expression, increased mitochondrial outer membrane permeabilization and depressed Bcl-2 expression. Addition of IL-7 to the culture partially corrects Bcl-2 levels in cultured p47(phox-/-) CD8(+) lymphocytes and improves the survival. Adding glucose oxidase to the culture to generate hydrogen peroxide along with IL-7 further improves p47(phox-/-) CD8(+) lymphocyte survival, but only to 30% of wild type. We conclude that p47(phox-/-) CD8(+) lymphocytes have an intrinsic survival defect likely in part related to the oxidase deficiency, but in vivo in lymph nodes of CGD mice, there are microenvironmental factors yet to be delineated that suppress the progression of apoptosis and allow the accumulation of lymphocytes leading to lymphoid hyperplasia.  相似文献   

16.
Although primary and memory responses against bacteria and viruses have been studied extensively, T helper type 2 (T(H)2) effector mechanisms leading to host protection against helminthic parasites remain elusive. Examination of the intestinal epithelial submucosa of mice after primary and secondary infections by a natural gastrointestinal parasite revealed a distinct immune-cell infiltrate after challenge, featuring interleukin-4-expressing memory CD4(+) T cells that induced IL-4 receptor(hi) (IL-4R(hi)) CD206(+) alternatively activated macrophages. In turn, these alternatively activated macrophages (AAMacs) functioned as important effector cells of the protective memory response contributing to parasite elimination, demonstrating a previously unknown mechanism for host protection against intestinal helminths.  相似文献   

17.
In the veterinary field, only limited information is available about interleukin-17A (IL-17), despite the fact that this cytokine plays an important role during pro-inflammatory immune responses and induces the production of chemotactic factors for neutrophils. The aim of this study was to characterize porcine IL-17-producing cells. We tested the cross-reactivity of five anti-human IL-17 monoclonal antibodies because such antibodies against porcine IL-17 are currently unavailable. Whole blood cells (WBCs) were stimulated with phorbol-myristate-acetate (PMA) and ionomycin and subsequently analyzed by flow cytometry. The antibody clone SCPL1362 was found to cross-react with porcine IL-17, whereas the other four antibodies tested did not recognize this cytokine. Using this antibody, we characterized porcine WBC-secreting IL-17 after PMA and ionomycin stimulation. All IL-17-producing WBCs were positive for the T lymphocyte marker CD3. Myeloid cells (CD172α(+)) and B lymphocytes (CD79α(+)) were IL-17 negative. The major subset of IL-17 positive T lymphocytes was the CD4(+) lymphocytes (about 60% of all IL-17 positive WBCs). The remaining IL-17 positive WBCs were γδTCR(+) lymphocytes. CD8 positive and CD8 negative cells were found within both CD4(+) and γδTCR(+) cells producing the cytokine. Moreover, IL-17 positive cells were mostly CD45RA negative, therefore activated cells or memory cells. Flow cytometry data were confirmed using sorted cells. Both sorted CD4(+) and γδTCR(+) cells produced IL-17 at mRNA level after PMA and ionomycin stimulation while double negative CD4(-)γδTCR(-) cells were negative for IL-17. We can conclude that only two subpopulations of porcine WBCs are sources of IL-17 after non-specific stimulation: CD3(+)CD4(+) and CD3(+)γδTCR(+).  相似文献   

18.
M141R is a myxoma virus gene that encodes a cell surface protein with significant amino acid similarity to the family of cellular CD200 (OX-2) proteins implicated in the regulation of myeloid lineage cell activation. The creation of an M141R deletion mutant myxoma virus strain (vMyx141KO) and its subsequent infection of European rabbits demonstrated that M141R is required for the full development of a lethal infection in vivo but is not required for efficient virus replication in susceptible cell lines in vitro. Minor secondary sites of infection were detected in the majority of rabbits infected with the M141R deletion mutant, demonstrating that the M141R protein is not required for the dissemination of virus within the host. When compared to wild-type myxoma virus-infected rabbits, vMyx141KO-infected rabbits showed higher activation levels of both monocytes/macrophages and lymphocytes in situ through assessments of inducible nitric oxide synthase-positive and CD25(+) infiltrating cells in infected and lymphoid tissues. Purified peripheral blood mononuclear cells from vMyx141KO-infected rabbits demonstrated an increased ability to express gamma interferon upon activation by phorbol myristate acetate plus ionomycin compared to cells purified from wild-type myxoma virus-infected rabbits. We concluded that the M141R protein is a bona fide CD200-like immunomodulator protein which is required for the full pathogenesis of myxoma virus in the European rabbit and that its loss from the virus results in increased activation levels of macrophages in infected lesions and draining lymph nodes as well as an increased activation level of circulating T lymphocytes during infection. We propose a model whereby M141R transmits inhibitory signals to tissue macrophages, and possibly resident CD200R(+) dendritic cells, that reduce their ability to antigenically prime lymphocytes and possibly provides anergic signals to T cells directly.  相似文献   

19.
The earliest thymic progenitors (ETPs) were recently shown to give rise to both lymphoid and myeloid cells. Whereas the majority of ETPs are derived from IL-7Rα-positive cells and give rise exclusively to T cells, the origin of the myeloid cells remains undefined. In this study, we show both in vitro and in vivo that IL-13Rα1(+) ETPs yield myeloid cells with no potential for maturation into T cells, whereas IL-13Rα1(-) ETPs lack myeloid potential. Moreover, transfer of lineage-negative IL-13Rα1(+) bone marrow stem cells into IL-13Rα1-deficient mice reconstituted thymic IL-13Rα1(+) myeloid ETPs. Myeloid cells or macrophages in the thymus are regarded as phagocytic cells whose function is to clear apoptotic debris generated during T cell development. However, the myeloid cells derived from IL-13Rα1(+) ETPs were found to perform Ag-presenting functions. Thus, IL-13Rα1 defines a new class of myeloid restricted ETPs yielding APCs that could contribute to development of T cells and the control of immunity and autoimmunity.  相似文献   

20.
Ingram JT  Yi JS  Zajac AJ 《PLoS pathogens》2011,7(9):e1002273
During many chronic infections virus-specific CD8 T cells succumb to exhaustion as they lose their ability to respond to antigenic activation. Combinations of IL-12, IL-18, and IL-21 have been shown to induce the antigen-independent production of interferon (IFN)-γ by effector and memory CD8 T cells. In this study we investigated whether exhausted CD8 T cells are sensitive to activation by these cytokines. We show that effector and memory, but not exhausted, CD8 T cells produce IFN-γ and upregulate CD25 following exposure to certain combinations of IL-12, IL-18, and IL-21. The unresponsiveness of exhausted CD8 T cells is associated with downregulation of the IL-18-receptor-α (IL-18Rα). Although IL-18Rα expression is connected with the ability of memory CD8 T cells to self-renew and efflux rhodamine 123, the IL-18Rα(lo) exhausted cells remained capable of secreting this dye. To further evaluate the consequences of IL-18Rα downregulation, we tracked the fate of IL-18Rα-deficient CD8 T cells in chronically infected mixed bone marrow chimeras and discovered that IL-18Rα affects the initial but not later phases of the response. The antigen-independent responsiveness of exhausted CD8 T cells was also investigated following co-infection with Listeria monocytogenes, which induces the expression of IL-12 and IL-18. Although IL-18Rα(hi) memory cells upregulated CD25 and produced IFN-γ, the IL-18Rα(lo) exhausted cells failed to respond. Collectively, these findings indicate that as exhausted T cells adjust to the chronically infected environment, they lose their susceptibility to antigen-independent activation by cytokines, which compromises their ability to detect bacterial co-infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号