首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.  相似文献   

2.
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome‐wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow‐up in an additional 21 families at linked loci. We used two‐point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12‐22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1‐23.2, centering over the FHM2 locus (two‐point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine‐affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12‐22, and a second locus that may contribute to migraine in the general population at 1q23.1‐23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine‐mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy‐associated migraine.  相似文献   

3.
Synesthesia, a neurological condition affecting between 0.05%–1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.  相似文献   

4.
The risk of glioma has consistently been shown to be increased twofold in relatives of patients with primary brain tumors (PBT). A recent genome-wide linkage study of glioma families provided evidence for a disease locus on 17q12-21.32, with the possibility of four additional risk loci at 6p22.3, 12p13.33-12.1, 17q22-23.2, and 18q23. To identify the underlying genetic variants responsible for the linkage signals, we compared the genotype frequencies of 5,122 SNPs mapping to these five regions in 88 glioma cases with and 1,100 cases without a family history of PBT (discovery study). An additional series of 84 familial and 903 non-familial cases were used to replicate associations. In the discovery study, 12 SNPs showed significant associations with family history of PBT (P?相似文献   

5.
Age-related maculopathy (ARM), or age-related macular degeneration, is one of the most common causes of visual impairment in the elderly population of developed nations. In a combined analysis of two previous genomewide scans that included 391 families, containing up to 452 affected sib pairs, we found linkage evidence in four regions: 1q31, 9p13, 10q26, and 17q25. We now have added a third set of families and have performed an integrated analysis incorporating 530 families and up to 736 affected sib pairs. Under three diagnostic models, we have conducted linkage analyses using parametric (heterogeneity LOD [HLOD] scores under an autosomal dominant model) and nonparametric (Sall statistic) methods. There is ongoing evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. If we treat the third set of families as a replication set, then two regions (10q26 and 17q25) are replicated, with LOD scores >1.0. If we pool all our data together, then four regions (1q31, 2q14.3, 10q26, and 17q25) show HLOD or Sall scores > or =2.0. Within the 1q31 region, we observed an HLOD of 2.72 (genomewide P=.061) under our least stringent diagnostic model, whereas the 17q25 region contained a maximal HLOD of 3.53 (genomewide P=.007) under our intermediate diagnostic model. We have evaluated our results with respect to the findings from several new independent genomewide linkage studies and also have completed ordered subset analyses (OSAs) with apolipoprotein E alleles, smoking history, and age at onset as stratifying covariates. The OSAs generate the interesting hypothesis that the effect of smoking on the risk of ARM is accentuated by a gene in the 10q26 region--a region implicated by four other studies.  相似文献   

6.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

7.
Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.  相似文献   

8.
The linkage search for susceptibility loci using SNP markers in hereditary hearing loss has proven challenging due to genetic heterogeneity. We conducted a genome-wide linkage analysis using high-density SNP markers in two Korean families (families coded SD-J and SR-167) with autosomal dominant non-syndromic hearing loss (ADNSHL). Evidence was found of linkage at 8q24.13~q24.3 and 10p11.21~q22.2 (LOD 3.01) in the SD-J family. In the case of family SR-167, which had the most affected members, the parametric LOD score was low owing to the lack of power for linkage analysis. However, using non-parametric linkage analysis, it was possible to obtain significant evidence for linkage at 10q22.1~q23.31 (LOD 1.79; NPL 6.47, P<0.00001). There is an overlapping region with a significant LOD score between the SD-J and SR-167 families, which encompasses 4 cM at 10q22.1~22.2. Interestingly, the characteristics of hearing loss in both families were similar, and the haplotype within overlapping region was shared in the affected individuals of the two families. We performed direct sequencing of the candidate genes that are thought to be causing the condition, but no disease-causing mutations were identified.  相似文献   

9.
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family.  相似文献   

10.
Paget disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and previous studies have shown that the PDB-like bone dysplasia familial expansile osteolysis is caused by activating mutations in the TNFRSF11A gene that encodes receptor activator of nuclear factor kappa B (RANK); however, linkage studies, coupled with mutation screening, have excluded involvement of RANK in the vast majority of patients with PDB. To identify other candidate loci for PDB, we conducted a genomewide search in 319 individuals, from 62 kindreds with familial PDB, who were predominantly of British descent. The pattern of inheritance in the study group as a whole was consistent with autosomal dominant transmission of the disease. Parametric multipoint linkage analysis, under a model of heterogeneity, identified three chromosomal regions with LOD scores above the threshold for suggestive linkage. These were on chromosomes 2q36 (LOD score 2.7 at 218.24 cM), 5q35 (LOD score 3.0 at 189.63 cM), and 10p13 (LOD score 2.6 at 41.43 cM). For each of these loci, formal heterogeneity testing with HOMOG supported a model of linkage with heterogeneity, as opposed to no linkage or linkage with homogeneity. Two-point linkage analysis with a series of markers from the 5q35 region in another large kindred with autosomal dominant familial PDB also supported linkage to the candidate region with a maximum LOD score of 3.47 at D5S2034 (187.8 cM). These data indicate the presence of several susceptibility loci for PDB and identify a strong candidate locus for the disease, on chromosome 5q35.  相似文献   

11.
Macular Telangiectasia type 2 (MacTel) is a relatively rare macular disease of adult onset presenting with distortions in the visual field and leading to progressive loss of visual acuity. For the purpose of a gene mapping study, several pedigrees were ascertained with multiple affected family members. Seventeen families with a total of 71 individuals (including 45 affected or possibly affected) were recruited at clinical centers in 7 countries under the auspices of the MacTel Project. The disease inheritance was consistent with autosomal dominant segregation with reduced penetrance. Genome-wide linkage analysis was performed, followed by analysis of recombination breakpoints. Linkage analysis identified a single peak with multi-point LOD score of 3.45 on chromosome 1 at 1q41-42 under a dominant model. Recombination mapping defined a minimal candidate region of 15.6 Mb, from 214.32 (rs1579634; 219.96 cM) to 229.92 Mb (rs7542797; 235.07 cM), encompassing the 1q41-42 linkage peak. Sanger sequencing of the top 14 positional candidates genes under the linkage peak revealed no causal variants in these pedigrees.  相似文献   

12.
There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p?=?1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p?=?7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.  相似文献   

13.
Predisposition factors for pelvic floor disorders (PFDs), including pelvic organ prolapse (POP), stress urinary incontinence (SUI), urge urinary incontinence (UUI), and hernias, are not well understood. We assessed linkage evidence for PFDs in mostly sister pairs who received treatment for moderate-to-severe POP. We genotyped 70 affected women of European descent from 32 eligible families with at least two affected cases by using the Illumina 1 million single-nucleotide polymorphism (SNP) marker set. Parametric linkage analysis with general dominant and recessive models was performed by the Markov chain Monte Carlo linkage analysis method, MCLINK, and a set of SNPs was formed, from which those in high linkage disequilibrium were eliminated. Significant genome-wide evidence for linkage was identified on chromosome 9q21 with a HLOD score of 3.41 under a recessive model. Seventeen pedigrees (53%) had at least nominal evidence for linkage on a by-pedigree basis at this region. These results provide evidence for a predisposition gene for PFDs on chromosome 9q.  相似文献   

14.
We present a two-stage genomewide scan for osteoarthritis-susceptibility loci, using 481 families that each contain at least one affected sibling pair. The first stage, with 272 microsatellite markers and 297 families, involved a sparse map covering 23 chromosomes at intervals of approximately 15 cM. Sixteen markers that showed evidence of linkage at nominal P相似文献   

15.
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of disorders characterized by insidiously progressive spastic weakness in the legs. Genetic loci for autosomal dominant HSP exist on chromosomes 2p, 14q, and 15q. These loci are excluded in 45% of autosomal dominant HSP kindreds, indicating the presence of additional loci for autosomal dominant HSP. We analyzed a Caucasian kindred with autosomal dominant HSP and identified tight linkage between the disorder and microsatellite markers on chromosome 8q (maximum two-point LOD score 5.51 at recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant HSP on chromosome 8q23-24. Currently this locus spans 6.2 cM between D8S1804 and D8S1774 and includes several potential candidate genes. Identifying this novel HSP locus on chromosome 8q23-24 will facilitate discovery of this HSP gene, improve genetic counseling for families with linkage to this locus, and extend our ability to correlate clinical features with different HSP loci.  相似文献   

16.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

17.
We performed a genomewide scan and genetic linkage analysis, to identify loci associated with age-related macular degeneration (AMD). We collected 70 families, ranging from small nuclear families to extended multigenerational pedigrees and consisting of a total of 344 affected and 217 unaffected members available for genotyping. We performed linkage analyses using parametric and allele-sharing models. We performed the analyses on the complete pedigrees but also subdivided the families into nuclear pedigrees. Finally, to dissect potential genetic factors responsible for differences in disease manifestation, we stratified the sample by two major AMD phenotypes (neovascular AMD and geographic atrophy) and by age of affected family members at the time of our evaluation. We have previously demonstrated linkage between AMD and 1q25-31 in a single large family. In the combined sample, we have detected the following loci with scores exceeding a LOD=2 cutoff under at least one of the models considered: 1q31 (HLOD=2.07 at D1S518), 3p13 (HLOD=2.19 at D3S1304/D3S4545), 4q32 (HLOD=2.66 at D4S2368, for the subset of families with predominantly dry AMD), 9q33 (LODZlr=2.01 at D9S930/D9S934), and 10q26 (HLOD=3.06 at D10S1230). Using correlation analysis, we have found a statistically significant correlation between LOD scores at 3p13 and 10q26, providing evidence for epistatic interactions between the loci and, hence, a complex basis of AMD. Our study has identified new loci that should be considered in future mapping and mutational analyses of AMD and has strengthened the evidence in support of loci suggested by other studies.  相似文献   

18.
The autoimmune thyroid diseases (AITDs), comprising Graves disease (GD) and Hashimoto thyroiditis (HT), develop as a result of a complex interaction between predisposing genes and environmental triggers. Previously, we identified six loci that showed evidence for linkage with AITD in a data set of 56 multiplex families. The goals of the present study were to replicate/reject the previously identified loci before fine mapping and sequencing the candidate genes in these regions. We performed a whole-genome linkage study in an expanded data set of 102 multiplex families with AITD (540 individuals), through use of 400 microsatellite markers. Seven loci showed evidence for linkage to AITD. Three loci, on chromosomes 6p, 8q, and 10q, showed evidence for linkage with both GD and HT (maximum multipoint heterogeneity LOD scores [HLOD] 2.0, 3.5, and 4.1, respectively). Three loci showed evidence for linkage with GD: on 7q (HLOD 2.3), 14q (HLOD 2.1), and 20q (LOD 3.3, in a subset of the families). One locus on 12q showed evidence of linkage with HT, giving an HLOD of 3.4. Comparison with the results obtained in the original data set showed that the 20q (GD-2) and 12q (HT-2) loci continued to show evidence for linkage in the expanded data set; the 6p and 14q loci were located within the same region as the previously identified 6p and 14q loci (AITD-1 and GD-1, respectively), but the Xq (GD-3) and 13q (HT-1) loci were not replicated in the expanded data set. These results demonstrated that multiple genes may predispose to GD and HT and that some may be common to both diseases and some are unique. The loci that continue to show evidence for linkage in the expanded data set represent serious candidate regions for gene identification.  相似文献   

19.
Family history is a major risk factor for colorectal cancer and many families segregate the disease as a seemingly monogenic trait. A minority of familial colorectal cancer could be explained by known monogenic genes and genetic loci. Familial polyposis and Lynch syndrome are two syndromes where the predisposing genes are known but numerous families have been tested without finding the predisposing gene. We performed a genome wide linkage analysis in 121 colorectal families with an increased risk of colorectal cancer. The families were ascertained from the department of clinical genetics at the Karolinska University Hospital in Stockholm, Sweden and were considered negative for Familial Polyposis and Lynch syndrome. In total 600 subjects were genotyped using single nucleotide polymorphism array chips. Parametric- and non-parametric linkage analyses were computed using MERLIN in all and subsets of families. No statistically significant result was seen, however, there were suggestive positive HLODs above two in parametric linkage analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2, rs1338121) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5, rs2306737). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2, rs920683) and one on 17p13.2 (LOD/HLOD=2.0, rs884250). No NPL score above two was seen for any of the families. Our linkage study provided additional support for the previously suggested region on chromosome 9 and suggested additional loci to be involved in colorectal cancer risk. Sequencing of genes in the regions will be done in future studies.  相似文献   

20.
Recent studies suggest that hereditary prostate cancer (PRCA) is a complex disease, involving multiple susceptibility genes and variable phenotypic expression. Through linkage analysis, potential prostate cancer susceptibility loci have been mapped to 3 regions on chromosome 1. To investigate the reported linkage to these regions, we conducted linkage studies on 144 PRCA families by using microsatellite markers in regions 1q24-25 (HPC1) and 1q42.2-43 (PCAP). We also examined the 1p36 (CAPB) region in 13 PRCA families with at least one case of brain cancer. No significant evidence of linkage to the HPC1 or PCAP region was found when the entire data set was analyzed. However, weak evidence for linkage to HPC1 was observed in the subset of families with male-to-male transmission (n=102; maximum multipoint nonparametric linkage [NPL] 1.99, P=.03). Weak evidence for linkage with heterogeneity within this subset was also observed (HLOD 1.21, P=.02), with approximately 20% of families linked. Although not statistically significant, suggestive evidence for linkage to PCAP was observed for the families (n=21) that met the three criteria of male-to-male transmission, average age of diagnosis <66 years, and >/=5 affected individuals (maximum multipoint NPL 1.45, P=.08). There was no evidence for linkage to CAPB in the brain cancer-prostate cancer subset. These results strengthen the argument that prostate cancer is a heterogeneous disease and that multiple genetic and environmental factors may be important for its etiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号