首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).  相似文献   

2.
3.
Apoptosis of infected cells represents a key host defense mechanism against viral infections. The impact of apoptosis on the elimination of hepatitis C virus (HCV)-infected cells is poorly understood. The TRAIL has been implicated in the death of liver cells in hepatitis-infected but not in normal liver cells. To determine the impact of TRAIL on apoptosis of virus-infected host cells, we studied TRAIL-induced apoptosis in a tissue culture model system for HCV infection. We demonstrated that HCV infection sensitizes primary human hepatocytes and Huh7.5 hepatoma cells to TRAIL induced apoptosis in a dose- and time-dependent manner. Mapping studies identified the HCV nonstructural proteins as key mediators of sensitization to TRAIL. Using a panel of inhibitors targeting different apoptosis pathways, we demonstrate that sensitization to TRAIL is caspase-9 dependent and mediated in part via the mitochondrial pathway. Sensitization of hepatocytes to TRAIL-induced apoptosis by HCV infection represents a novel antiviral host defense mechanism that may have important implications for the pathogenesis of HCV infection and may contribute to the elimination of virus-infected hepatocytes.  相似文献   

4.
5.
Cachexia is associated with poor prognosis in patients with chronic disease. Tumor necrosis factor-alpha (TNFalpha) plays a pivotal role in mediating cachexia and has been demonstrated to inhibit skeletal muscle differentiation in vitro. It has been proposed that TNFalpha-mediated activation of NFkappaB leads to down regulation of MyoD, however the mechanisms underlying TNFalpha effects on skeletal muscle remain poorly understood. We report here a novel pathway by which TNFalpha inhibits muscle differentiation through activation of caspases in the absence of apoptosis. TNFalpha-mediated caspase activation and block of differentiation are dependent upon the expression of PW1, but occur independently of NFkappaB activation. PW1 has been implicated previously in p53-mediated cell death and can induce bax translocation to the mitochondria. We show that bax-deficient myoblasts do not activate caspases and differentiate in the presence of TNFalpha, highlighting a role for bax-dependent caspase activation in mediating TNFalpha effects. Taken together, our data reveal that TNFalpha inhibits myogenesis by recruiting components of apoptotic pathways through PW1.  相似文献   

6.
Huang CY  Chen JY  Wu SC  Tan CH  Tzeng RY  Lu PJ  Wu YF  Chen RH  Wu YC 《PloS one》2012,7(5):e36584
Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein), CED-9 (Bcl-2), and CED-4 (Apaf-1) act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k) that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution.  相似文献   

7.
8.
Kanda T  Steele R  Ray R  Ray RB 《Journal of virology》2007,81(22):12375-12381
Beta interferon (IFN-beta) expression is triggered by double-stranded RNA, a common intermediate in the replication of many viruses including hepatitis C virus (HCV). The recent development of cell culture-grown HCV allowed us to analyze the IFN signaling pathway following virus infection. In this study, we have examined the IFN-beta signaling pathway following infection of immortalized human hepatocytes (IHH) with HCV genotype 1a (clone H77) or 2a (clone JFH1). We observed that IHH possesses a functional Toll-like receptor 3 pathway. HCV infection in IHH enhanced IFN-beta and IFN-stimulated gene 56 (ISG56) promoter activities; however, poly(I-C)-induced IFN-beta and ISG56 expression levels were modestly inhibited upon HCV infection. IHH infected with HCV (genotype 1a or 2a) exhibited various levels of translocation of IRF-3 into the nucleus. The upregulation of endogenous IFN-beta and 2',5'-oligoadenylate synthetase 1 mRNA expression was also observed in HCV-infected IHH. Subsequent studies suggested that HCV infection in IHH enhanced STAT1 and ISG56 protein expression. A functional antiviral response of HCV-infected IHH was observed by the growth-inhibitory role in vesicular stomatitis virus. Together, our results suggested that HCV infection in IHH induces the IFN signaling pathway, which corroborates observations from natural HCV infection in humans.  相似文献   

9.
10.
11.
Activated microglia have been implicated in the regulation of neuronal cell death. However, the biochemical mechanism for neuronal death triggered by activated microglia is still unclear. When treated with activated microglia, neuronal PC12 cells undergo apoptosis accompanied by caspase-3-like protease activation and DNA fragmentation. Apoptotic bodies formed were subsequently phagocytosed by neighboring activated microglia. Pretreatment of the cells with the caspase-3-like protease inhibitor N-acetyl-Asp-Glu-Val-Asp-aldehyde did not reverse this cell death. Although Bcl-2 overexpression in the cells caused the inhibition of caspase-3-like protease activity and DNA fragmentation and the effective interference of apoptosis induced by deprivation of trophic factors, it could not suppress the activated microglia-induced neuronal death. At the electron microscopic level, degenerating cells with high levels of Bcl-2 were characterized by slightly condensed chromatins forming irregular-shaped masses, severely disintegrated perikarya, and marked vacuolation. Various protease inhibitors tested did not inhibit this cell death, whereas the radical oxygen species scavenger N-acetyl-L-cysteine significantly suppressed this death. Altogether, our study provides an alternative death pathway for the activated microglia-induced neuronal death by blockage of the caspase-3 protease cascade.  相似文献   

12.
To determine the role of phosphatidylinositol 3-kinase (PI3-kinase) in the regulation of insulin secretion, we examined the effect of wortmannin, a PI3-kinase inhibitor, on insulin secretion using the isolated perfused rat pancreas and freshly isolated islets. In the perfused pancreas, 10(-8) M wortmannin significantly enhanced the insulin secretion induced by the combination of 8.3 mM glucose and 10(-5) M forskolin. In isolated islets, cyclic AMP (cAMP) content was significantly increased by wortmannin in the presence of 3.3 mM, 8.3 mM, and 16.7 mM glucose with or without forskolin. In the presence of 16.7 mM glucose with or without forskolin, wortmannin promoted insulin secretion significantly. On the other hand, in the presence of 8.3 mM glucose with forskolin, wortmannin augmented insulin secretion significantly; although wortmannin tended to promote insulin secretion in the presence of glucose alone, it was not significant. To determine if wortmannin increases cAMP content by promoting cAMP production or by inhibiting cAMP reduction, we examined the effects of wortmannin on 10(-4) M 3-isobutyl-1-methylxantine (IBMX)-induced insulin secretion and cAMP content. In contrast to the effect on forskolin-induced secretion, wortmannin had no effect on IBMX-induced insulin secretion or cAMP content. Moreover, wortmannin had no effect on nonhydrolyzable cAMP analog-induced insulin secretion in the perfusion study. These data indicate that wortmannin induces insulin secretion by inhibiting phosphodiesterase to increase cAMP content, and suggest that PI3-kinase inhibits insulin secretion by activating phosphodiesterase to reduce cAMP content.  相似文献   

13.
Lee YW  Kühn H  Hennig B  Toborek M 《FEBS letters》2000,485(2-3):122-126
The present study was designed to investigate the hypothesis that interleukin-4 (IL-4) can induce apoptosis of human endothelial cells and to study regulatory pathways of this process. Indeed, DNA ladder assay and flow cytometry study showed that IL-4 can induce apoptosis of endothelial cells in a time- and dose-dependent manner. In addition, IL-4 markedly increased activity of caspase-3, and inhibition of this enzyme suppressed IL-4-induced apoptosis in a dose-dependent manner. These results provide the first evidence that IL-4 can induce apoptosis of human endothelial cells. In addition, the data indicate that the caspase-3-dependent pathway is critically involved in this process.  相似文献   

14.
Previous work has implicated that the core protein of hepatitis C virus (HCV) may play a modulatory effect on NF-kappaB activation induced by TNF-alpha. However, it is unclear how HCV core protein modulates TNF-alpha-induced NK-kappaB activation. Here we show that overexpression of HCV core protein potentiates NF-kappaB activation induced by TNF-alpha. Expression of dominant negative form of TRAF2 inhibits the synergistic effects of HCV core protein on NF-kappaB activation, suggesting that HCV core protein potentiates NF-kappaB activation through TRAF2. Moreover, we demonstrate that HCV core protein potentiates TRAF2-mediated NF-kappaB activation via IKKbeta. In addition, HCV core protein associates with TNF-R1-TRADD-TRAF2 signaling complex, resulting in synergistically activation of NF-kappaB induced by TNF-alpha. Thus, these observations indicate that HCV core protein may play an important role in the regulation of the cellular inflammatory and immune responses through NF-kappaB.  相似文献   

15.
Inhibition of the hepatitis C virus (HCV) NS3 protease has emerged as an attractive approach to defeat the global hepatitis C epidemic. In this work, we present the synthesis and biochemical evaluation of HCV NS3 protease inhibitors comprising a non-natural aromatic P(1) moiety. A series of inhibitors with aminobenzoyl sulfonamides displaying submicromolar potencies in the full-length NS3 protease assay was prepared through a microwave-irradiated, palladium-catalyzed, amidocarbonylation protocol.  相似文献   

16.
Conophylline: a novel differentiation inducer for pancreatic beta cells   总被引:3,自引:0,他引:3  
Reduction of the beta cell mass is critical in the pathogenesis of diabetes mellitus. The discovery of agents, which induce differentiation of pancreatic progenitors to beta cells, would be useful to develop a new therapeutic approach to treat diabetes. To identify a new agent to stimulate differentiation of pancreatic progenitor cells to beta cells, we screened various compounds using pancreatic AR42J cells, a model of pancreatic progenitor cells. Among various compounds and extracts tested, we found that conophylline, a vinca alkaloid extracted from leaves of a tropical plant Ervatamia microphylla, was effective in converting AR42J into endocrine cells. Conophylline reproduces the differentiation-inducing activity of activin A. Unlike activin A, however, conophylline does not induce apoptosis. To induce differentiation of AR42J cells, conophylline increases the expression of neurogenin-3 by activating p38 mitogen-activated protein kinase. Conophylline also induces differentiation in cultured pancreatic progenitor cells obtained from fetal and neonatal rats. More importantly, conophylline is effective in reversing hyperglycemia in neonatal streptozotocin-treated rats, and both the insulin content and the beta cell mass are increased by conophylline. Histologically, conophylline increases the numbers of ductal cells positive for pancreatic-duodenal-homeobox protein-1 and islet-like cell clusters. Conophylline and related compounds are useful in inducing differentiation of pancreatic beta cells both in vivo and in vitro.  相似文献   

17.
We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.  相似文献   

18.
19.
The hepatitis B virus (HBV) X protein (HBx) is essential for virus infection and has been implicated in the development of liver cancer associated with chronic infection. HBx can interact with a number of cellular proteins, and in cell culture, it exhibits pleiotropic activities, among which is its ability to interfere with cell viability and stimulate HBV replication. Previous work has demonstrated that HBx affects cell viability by a mechanism that requires its binding to DDB1, a highly conserved protein implicated in DNA repair and cell cycle regulation. We now show that an interaction with DDB1 is also needed for HBx to stimulate HBV genome replication. Thus, HBx point mutants defective for DDB1 binding fail to complement the low level of replication of an HBx-deficient HBV genome when provided in trans, and one such mutant regains activity when directly fused to DDB1. Furthermore, DDB1 depletion by RNA interference specifically compromises replication of wild-type HBV, indicating that HBx produced from the viral genome also functions in a DDB1-dependent fashion. We also show that HBx in association with DDB1 acts in the nucleus and stimulates HBV replication mainly by enhancing viral mRNA levels, regardless of whether the protein is expressed from the HBV genome itself or supplied in trans. Interestingly, whereas HBx induces cell death in both HepG2 and Huh-7 hepatoma cell lines, it enhances HBV replication only in HepG2 cells, suggesting that the two activities involve distinct DDB1-dependent pathways.  相似文献   

20.
Recent studies have emphasized microRNAs (miRs) as crucial regulators in the occurrence and development of pancreatic cancer that continues to be one of the deadliest malignancies with few effective therapies. The study aimed to investigate the functional role of miR-873 and its associated mechanism to unravel the biological characteristics of pancreatic cancer stem cells in tumor growth. The expression patterns of pleckstrin-2 (PLEK2) and miR-873 were detected in the pancreatic cancer tissues. Then to further investigate specific role of miR-873, the pancreatic cancer stem cells were treated with miR-873 mimic, PLEK2, small interfering RNA against PLEK2, LY294002 (inhibitor of phosphatidylinositol 3-kinase/protein kinase B [PI3K/AKT] pathway) to detect the relative gene expression as well as their effects on cell self-renewal, proliferation and apoptosis. Finally, the tumor formation in nude mice was measured to verify the preceding results in vivo. Pancreatic cancer tissues exhibited a decline of miR-873 expression and an enhancement of PLEK2 expression. miR-873 targeted PLEK2 and downregulated its expression, leading to inhibition of PI3K/AKT pathway. Overexpressed miR-873 or silenced PLEK2 inhibited the self-renewal and proliferation while promoting the apoptosis of pancreatic cancer stem cells. Tumor formation was inhibited by overexpressed miR-873 or silenced PLEK2 in nude mice. Overall, miR-873 can suppress the self-renewal and proliferation of pancreatic cancer stem cells by blocking PLEK2-dependent PI3K/AKT pathway. Hence, this study contributes to understanding the role of miR-873 in pancreatic cancer stem cells and its underlying molecular mechanisms to aid in the development of effective pancreatic cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号