首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database creating a virtual biobank. Access to this online collection is currently provided to over 200 clinicians and scientists involved in type 1 diabetes research. The online database provides a means for rapid and complete data sharing and for investigators to select blocks for paraffin or frozen serial sections.  相似文献   

2.
Glucagon, insulin, somatostatin, and pancreatic polypeptide have been localized in the anolian pancreas using peroxidase-antiperoxidase immunocytochemistry. The most abundant endocrine cell type contains glucagon. Insulin-containing cells are the next most numerous. Somatostatin-immunoreactive cells tend to be localized at the periphery of the islet cords. Pancreatic polypeptide-containing cells are a minor endocrine component scattered throughout the exocrine pancreas and occasionally within the islet areas. No staining was observed after application of antigastrin serum.  相似文献   

3.
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.  相似文献   

4.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

5.
Summary The pancreatic islets of rabbit, dog and opossum have been studied by light and electron microscopy. Silver-positive cells in the rabbit are predominantly sandwiched between the peripheral A and central B cells, and by electron microscopy are identified as D cells. Pancreatic islets in the tail of the dog pancreas have A, B, and D (silver-positive) cells, but the islets in the uncinate process of the dog pancreas lack phosphotungstic acid hematoxylin-positive A cells. By electron microscopy the characteristic D cells are found in both tail and uncinate process, but A cells are confined to the tail islets, confirming the identification of cell types. A unique cell type termed the F cell is found in the dog uncinate islets and it is characterized by secretory granules of angular profiles. In the opossum, the A cells contain considerable amounts of glycogen demonstrable by both light and electron microscopy. A unique cell type is also present in the opossum islets termed an E cell (Thomas, 1937), which has large secretory granules (400–500 m). The physiological implications of a multiplicity of cell types in pancreatic islets is discussed.This investigation was supported in part by United States Public Health Service research grants GM-10102 and GM-03784 from the Institute of General Medical Sciences, and AM-01226 from the Institute of Arthritis and Metabolic Diseases. The authors wish to acknowledge the valuable technical assistance of Mrs. Aileen Sevier and Mrs. Lidia Donahue.  相似文献   

6.
While regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D). Cadaveric pancreas specimens were collected from the head, body and tail regions of each donor, including subjects with no history of diabetes or pancreatic diseases (n = 23) as well as patients with T2D (n = 12). The study further included individuals from whom islets were isolated (n = 7) to study islet yield and function in a clinical setting of islet transplantation. The whole pancreatic sections were examined using an innovative large-scale image capture and unbiased detailed quantitative analyses of the characteristics of islets from each individual (architecture, size, shape and distribution). Islet distribution/density is similar between the head and body regions, but is >2-fold higher in the tail region. In contrast to rodents, islet cellular composition and architecture were similar throughout the pancreas and there was no difference in glucose-stimulated insulin secretion in islets isolated from different regions of the pancreas. Further studies revealed preferential loss of large islets in the head region in patients with T2D. The present study has demonstrated distinct characteristics of the human pancreas, which should provide a baseline for the future studies integrating existing research in the field and helping to advance bi-directional research between humans and preclinical models.  相似文献   

7.
Summary The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostain- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

8.
The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in type 1 diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated.In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet β-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the “gold standard” of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as an in vivo progenitor for pancreatic β-cells has implications for a potentially important, expandable source of new islets for diabetic replenishment therapy.  相似文献   

9.
The pancreatic islets and their blood vessels have been studied in the head, the body and the tail of the human pancreas. The following methods have been applied: injection, histological and quantitative estimation, graphic and plastic reconstruction. A rather great variability in the form of the pancreatic islets has been stated, with presence of one--two peculiar processes in large islets. In different parts of the pancreatic gland, relative volume of the endocrine parenchyma has been stated to be statistically greater (2.16 +/- 0.45%) in the caudal portion than in the head of the gland (1.31 +/- 0.26%). In every pancreatic islet an afferent arterial vessel is described, two types of its branching are determined: magistral and scattered. Relative volume of the pancreatic islets and morpho-functional coefficient reflecting the ratio of the capillary surface area to the volume of the islet capillaries in different parts of the pancreatic gland have been estimated.  相似文献   

10.
11.
Four major pancreatic hormones were immunolocalized at the light and electron microscopic levels in the pancreas of the Nile crocodile, Crocodilus niloticus. Immunogold was used for electron microscopy, and peroxidase-antiperoxidase was used for light microscopy. Somatostatin-positive D-cells and pancreatic polypeptide-containing F-cells accounted for about 60% of the immunoreactive cells in the ventral pancreas. Glucagon-positive A-cells were the least frequent cell type in the ventral pancreas, about 15%, but were the predominant cell type, about 40%, in the pancreas that was dorsal in character. An expanded population of D-cells (relative to mammals and other higher vertebrates) in association with two very different numbers of A-cells can be expected to have important consequences for the homotropic control of secretory activity of the endocrine pancreas as well as for the function of the acinar pancreas. F-cells were absent from the dorsal part of the pancreas, whereas insulin-containing B-cells were slightly more abundant in this portion of the pancreas. The regional character of the endocrine pancreas was related to the complex looping of the proximal small intestine. Without immunolabeling, only B-granules were morphognomonic in electron micrographs. The insulin-reactive B-granules were the smallest (370 nm) of the secretory granules and were followed in size by somatostatin-positive D-granules (380 nm). The pancreatic polypeptide-containing secretory granules were the largest (580 nm). Glucagon-reactive A-granules (430 nm) sometimes exhibited a protuberance or extension of secretory granule matrix and limiting membrane. Such a morphological feature has previously been associated with secretion of glucagon and the initiation of insulin secretion. Taken together these studies indicate that protuberances have a significant, but as yet undefined, role in pancreatic endocrine cells.  相似文献   

12.
13.
The localization of pancreatic polypeptide (PP) cells was studied in the pancreas of four human neonates by specific immunocytochemical techniques. PP cells were detected in all parts of the pancreas. However, examination at low magnification showed that they were considerably more numerous in a small lobe, located at the posterior-inferior part of the head region. It is suggested that this lobe corresponds to the part of the pancreas that is derived from the ventral primordium. Both in the lobe rich in PP cells and in the remainder of the pancreas, approximately 75% of PP cells were present in the islets and 25% distributed among acini and ducts.  相似文献   

14.
The pancreatic islet is mainly composed of beta-, alpha- and delta-cells with small numbers of pancreatic polypeptide (PP) and epsilon cells. It is known that there is a region in the head of the pancreas that is rich in PP-cells. In the present study, we examined the distribution of PP-cells, and assessed the influence of the PP-cell rich region to quantify the total islet mass. Pancreatic tissues were collected from donors with no history of diabetes or pancreatic diseases (n = 12). A stereological approach with a computer-assisted large-scale analysis of whole pancreatic sections was applied to quantify the entire distribution of endocrine cells within a given section. The initial whole pancreas analysis showed that a PP-cell rich region was largely restricted to the uncinate process with a clear boundary. The distinct distribution of PP-cells includes irregularly shaped clusters composed solely of PP-cells. Furthermore, in the PP-cell rich region, beta- and alpha-cell mass is significantly reduced compared to surrounding PP-cell poor regions. The results suggest that the analysis of the head region should distinguish the PP-cell rich region, which is best examined separately. This study presents an important implication for the regional selection and interpretation of the results.  相似文献   

15.
The endocrine cells of the processus uncinatus in the dog pancreas were investigated with special reference to the formerly known F-cell. The F-cell was detected frequently in the periphery of pancreatic islets as well as among exocrine tissue. In both localizations the F-cell shows similar ultrastructural features. Membrane-bound irregularly shaped secretory granules of variable electron density were seen. The cell possesses all features of an endocrine polypeptide secreting cell. Using the immunofluorescence and immunoperoxidase technique in the uncinate processus of the dog, we could reveal that the anti-sera against bovine pancreatic polypeptide (BPP) reacts with the cell which is localized at the same sites as the F-cell. We therefore conclude that the pancreatic F-cell is identical to the pancreatic polypeptide-producing cell. The other endocrine cell types of the dog pancreas are glucagon-producing A-cells, insulin-producing B-cells, and somatostatin-producing D-cells, as well as serotonin-producing EC-cells which are regularly present in the dog pancreatic islets and also scattered among exocrine tissue and the duct epithelial cells.  相似文献   

16.
By immunofluorescence on cytospin preparations and on semithin sections of mouse pancreatic buds, we have found glucagon and pancreatic polypeptide (PP)-containing cells at embryonal day 10.5 (E 10.5) in dorsal buds and at E 11.5 in ventral buds. Insulin-containing cells appear in dorsal buds at E 11.5, and one to two days later in ventral buds. Somatostatin-containing cells are detectable from E 13.5 in both dorsal and ventral buds. A quantitative analysis shows that up to E 15.5, PP-containing cells are relatively abundant in both buds. By PCR amplification of oligo(dT)-primed cDNAs prepared from total pancreatic RNA, we also detect PP mRNA from E 10.5 onwards, thus confirming the early expression of the PP gene in the developing mouse pancreas. Analysis of endocrine cells in situ suggests three major patterns of cell distribution in embryonic pancreas. First, individual hormone-containing cells are located within the epithelium of pancreatic ducts. In both dorsal and ventral buds, the majority of these endocrine cells contain PP, but many also contain glucagon, insulin or somatostatin. Secondly, clusters of endocrine cells are found in the pancreatic interstitium. Many of these cells contain both glucagon and PP which, by immunogold labelling of consecutive thin sections, can be shown to co-exist within individual secretory granules. Finally, starting on E 18.5, typical islets are formed with centrally located B cells and with the adult 'one cell-one hormone' phenotype. These results suggest an intriguing ontogenic relationship between A- and PP-cells, and also indicate that PP-containing cells may occupy a hitherto unexpected place in the lineage of endocrine islet cells.  相似文献   

17.
18.
The pancreatic β-cell has a pivotal role in the regulation of glucose homeostasis; its death leads to type I diabetes. Neogenesis of β-cells, the differentiation of β-cells from non-β-cells, could be an important mechanism of islet cell repopulation. To examine the ability of the adult pancreas to generate new β-cells, we characterized the phenotype of β precursor cells in embryos and then determined that cells expressing embryonic traits appeared in islets of adult mouse pancreas following deletion of preexisting insulin cells by streptozotocin, a specific β-cell toxin. These precursor cells generated new β-cells (NBCs) that repopulated the islets. The number of NBCs increased dramatically after restoration of normoglycemia by insulin therapy. Future studies will seek to identify the source of the NBCs and to examine the mechanisms that lead to their differentiation.  相似文献   

19.
Ku SK  Lee JH  Lee HS 《Tissue & cell》2000,32(1):58-65
The distributions and relative frequencies of insulin-, glucagon- and somatostatin-immunoreactive cells were studied in dorsal, ventral, third and splenic lobes of developing chicken pancreas during embryonic periods (10 days of incubation to hatching) by immunohistochemical methods. The regions of pancreas were subdivided into three regions: exocrine, light and dark islet. Round, oval and spherical shaped immunoreactive cells were detected in all four lobes. According to developmental stages, the types of lobes and the regions of pancreas showed various distributions and relative frequencies. In the splenic lobes, insulin, glucagon and somatostatin-immunoreactive cells were detected in exocrine, dark islet and light islet from time differentiation of splenic lobes, 13 days of incubation. The insulin- and somatostatin-immunoreactive cells of the third lobes were detected in exocrine and light islets from 10 days of incubation, and in dark islets from 15 and 11 days of incubation respectively. Glucagon-immunoreactive cells were detected in exocrine, dark and light islets from 16, 11 and 19 days of incubation respectively. These immunoreactive cells of the ventral lobes were detected in exocrine and light islets. However, dark islets were not found in this lobe. Insulin-immunoreactive cells were demonstrated from 10 days of incubation in these two regions. Glucagon-immunoreactive cells were detected from 17 days of incubation in exocrine and 16 days of incubation in the light islets. Somatostatin-immunoreactive cells were demonstrated from 11 days of incubation in exocrine and 14 days of incubation in the light islets. In the dorsal lobes, insulin-immunoreactive cells were demonstrated in exocrine, dark and light islets from 12, 14, and 13 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were detected in dark and light islets from 13 and 14 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were demonstrated from 10 and 11 days of incubation in exocrine respectively. Generally, insulin-immunoreactive cells were increased in light islets but decreased in light islets with developmental stages. However, glucagon-immunoreactive cells were decreased in light islets but increased in dark islets. In addition, somatostatin-immunoreactive cells showed the same frequencies in light and dark islets with developmental stages except exocrine which increased with developmental stages.  相似文献   

20.
There has been great interest in understanding how human islets differ from rodent islets. Three major issues about human islet morphology have remained controversial over recent decades: 1) the proportion of the islet made up of β-cells; 2) whether islet cell types have a non-random mantle-core pattern, as seen in rodents, or are randomly scattered throughout the islet; 3) the relation of the different cell types to the blood vessels within the islet, which has implications for intraislet function. We re-examined these issues on immunostained sections of non-diabetic adult human pancreas. The composition of the islets can vary by the analysis method (number vs volume) and by the sampling of islets by size. The majority of adult human islets have clear, non-random clustering of β-cells and blood vessels that penetrate into the β-cell cores. We conclude that although there is far more variability in islet composition both within each human pancreas and among different human pancreas than in rodent pancreas, the islet architecture is not so different between the species. The intrapancreatic variability raises important questions about how islets evolve and function throughout life and how this might relate to the pathogenesis of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号