首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Although impaired decoding of emotional prosody has frequently been associated with Parkinson''s disease (PD), to date only few reports have sought to explore the effect of Parkinson''s treatment on disturbances of prosody decoding. In particular, little is known about how surgical treatment approaches such as high frequency deep brain stimulation (DBS) affect emotional speech perception in patients with PD. Accordingly, the objective of this study was to evaluate the effect of subthalamic nucleus (STN) stimulation on prosody processing.

Methodology/Principal Findings

To this end the performance of 13 PD patients on three tasks requiring the decoding of emotional speech was assessed and subsequently compared to the performance of healthy control individuals. To delineate the effect of STN-DBS, all patients were tested with stimulators turned on as well as with stimulators turned off. Results revealed that irrespective of whether assessments were made “on” or “off” stimulation, patients'' performance was less accurate as compared to healthy control participants on all tasks employed in this study. However, while accuracy appeared to be unaffected by stimulator status, a facilitation of reactions specific to highly conflicting emotional stimulus material (i.e. stimulus material presenting contradicting emotional messages on a verbal and non-verbal prosodic level) was observed during “on” stimulation assessments.

Conclusion

In sum, presented results suggest that the processing of emotional speech is indeed modulated by STN-DBS. Observed alterations might, on the one hand, reflect a more efficient processing of highly conflicting stimulus material following DBS. However, on the other hand, given the lack of an improvement in accuracy, increased impulsivity associated with STN stimulation needs to be taken into consideration.  相似文献   

3.
Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy.  相似文献   

4.
Deep brain stimulation of the subthalamic nucleus (DBS STN) is an effective treatment method in advanced Parkinson's disease (PD) providing marked improvement of its major motor symptoms. In addition, non-motor effects have been reported including weight gain in PD patients after DBS STN. Using retrospective survey, we aimed to evaluate weight changes in our patients with advanced PD treated with DBS STN. We inquired 25 PD patients (16 men, 9 women), of mean age 55 (42-65) years, mean PD duration 15 (9-21) years, who previously received bilateral DBS STN. We obtained valid data from 23 patients. In the first survey, 1 to 45 months after DBS, weight gain was found in all patients comparing to pre-DBS period. The mean increase was 9.4 kg (from 1 to 25 kg). The patients' mean body mass index (BMI) increased from 23.7 to 27.0 kg/m2, i.e. by 3.3 kg/m2 (+2 to +6.1 kg/m2). In the repeated survey one year later, in 12 of the patients body weight moderately decreased, 3 did not change, and 6 patients further increased their weight. Possible explanations of body weight gain after DBS STN include a reduction of energy output related to elimination of dyskinesias, improved alimentation or direct influence on function of lateral hypothalamus by DBS STN.  相似文献   

5.
帕金森病丘脑底核神经元的电活动特点   总被引:4,自引:0,他引:4  
Zhuang P  Li YJ 《生理学报》2003,55(4):435-441
本研究探讨了帕金森病(Parkinson′sdisease, PD)患者丘脑底核(subthalamic nucleus, STN)神经元电活动的特点及其与PD症状的关系.35例PD患者在接受手术治疗的同时, 应用微电极细胞记录和EMG记录技术,记录手术靶点STN及其周围结构神经元的电活动以及手术对侧肢体的EMG.应用分析软件甄别单细胞电活动, 分析其特点及其与肢体EMG的关系.结果表明, STN及其周围结构具有特征性放电活动.在36个记录针道中,共发现436个STN神经元, 平均放电频率44.0±20.5 Hz. 其中, 56%的神经元呈不规则簇状放电;15%呈紧张性放电; 29%呈规则的簇状放电, 其放电节律与肢体震颤的EMG高度一致(r2=0.66,P<0.01), 称之为震颤细胞. 在PD震颤型患者的STN中发现大量震颤细胞,且80%位于STN中上部, 而在PD僵直型患者的STN中均发现与运动相关的细胞电活动.本研究提示, 通过微电极记录技术可准确地判断STN的位置和范围;与震颤活动相关的细胞放电和与运动相关细胞的放电与PD症状有内在关系;STN参与PD运动障碍的病理生理过程.  相似文献   

6.
Tyrosinase is a key enzyme in the synthesis of melanin in skin and hair and has also been proposed to contribute to the formation of neuromelanin (NM). The presence of NM, which is biochemically similar to melanin in peripheral tissues, identifies groups of neurons susceptible in Parkinson's disease (PD). Whether tyrosinase is beneficial or detrimental to neurons is unclear; whilst the enzyme activity of tyrosinase generates dopamine-quinones and other oxidizing compounds, NM may form a sink for such radical species. In the present study, we demonstrated that tyrosinase is expressed at low levels in the human brain. We found that mRNA, protein and enzyme activity are all present but at barely detectable levels. In cell culture systems, expression of tyrosinase increases neuronal susceptibility to oxidizing conditions, including dopamine itself. We related these in vitro observations to the human disease by assessing whether there was any genetic association between the gene encoding tyrosinase and idiopathic PD. We found neither genotypic or haplotypic association with three polymorphic markers of the gene. This argues against a strong genetic association between tyrosinase and PD, although the observed contribution to cellular toxicity suggests that a biochemical association is likely.  相似文献   

7.
8.
Degeneration of dopaminergic neurones during Parkinson's disease is most extensive in the subpopulation of melanized-neurones located in the substantia nigra pars compacta. Neuromelanin is a dark pigment produced in the dopaminergic neurones of the human substantia nigra and has the ability to bind a variety of metal ions, especially iron. Post-mortem analyses of the human brain have established that oxidative stress and iron content are enhanced in association with neuronal death. As redox-active iron (free Fe2+ form) and other transition metals have the ability to generate highly reactive hydroxyl radicals by a catalytic process, we investigated the redox activity of neuromelanin (NM)-aggregates in a group of parkinsonian patients, who presented a statistically significant reduction (- 70%) in the number of melanized-neurones and an increased non-heme (Fe3+) iron content as compared with a group of matched-control subjects. The level of redox activity detected in neuromelanin-aggregates was significantly increased (+ 69%) in parkinsonian patients and was highest in patients with the most severe neuronal loss. This change was not observed in tissue in the immediate vicinity of melanized-neurones. A possible consequence of an overloading of neuromelanin with redox-active elements is an increased contribution to oxidative stress and intraneuronal damage in patients with Parkinson's disease.  相似文献   

9.
YR Wu  LC Tan  X Fu  CM Chen  WL Au  L Chen  YC Chen  KM Prakash  Y Zheng  GJ Lee-Chen  Y Zhao  JS Zeng  EK Tan  Z Pei 《PloS one》2012,7(7):e36123
It has been suggested that a common LRRK2 polymorphic variant (A419V (rs34594498 C >T)) may be a risk factor among Asians (especially in Taiwan). In this study, we examined this variant in a larger and independent Taiwan cohort. We found the frequency of the variant (A419V) to be very rare in our Taiwan PD and controls (?0.6%). Further studies were conducted in two other Chinese populations (Singapore and China), comprising of a total of 3004 subjects including 1517 PD patients and 1487 control subjects. However, our multi-center Chinese study revealed that the frequency of the variant was rare (?0.4%) and was not associated with risk of PD, suggesting that the variant is not a major risk factor for PD among Chinese, at least in our study population.  相似文献   

10.
The attentional set-shifting deficit that has been observed in Parkinson's disease (PD) has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.  相似文献   

11.
The subthalamic nucleus (STN) plays a central role in movement actuation and manifestation of movement disorders (i.e., tremor, rigidity, akynesia and postural instability) in Parkinson's disease (PD) patients. Moreover, it has been recently revealed that an opportune electrical stimulation of the STN, called deep brain stimulation (DBS), can strongly contribute to the annihilation of the PD-related motor disorders. Currently, a great effort is made both in Medicine, Neurosciences and Engineering for understanding and modeling in details how the STN works, how PD determines its pathological behavior and DBS restores the correct motor function.The paper is organized in two parts. Firstly some stochastic properties of the STN electrical activity are obtained by analyzing a preliminary set of experimental data coming from microelectrode recordings (MERs) in two PD patients who underwent the surgical implantation of DBS electrodes. Then, a nonlinear, stochastic, continuous-state model describing the global electrical behavior of the STN in PD patients is proposed. It is inspired by the fundamental physiologic features of the subthalamic cells and a fictitious vector state is introduced to represent the main dynamics. Its numerical parameters and stochastic properties are chosen by fitting the available data.  相似文献   

12.
We tested the hypothesis that modest, overfeeding-induced weight gain would increase sympathetic neural activity in nonobese humans. Twelve healthy males (23 +/- 2 years; body mass index, 23.8 +/- 0.7) were overfed approximately 1,000 kcal/day until a 5-kg weight gain was achieved. Muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, body composition (dual energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured at baseline and following 4 wk of weight stability at each individual's elevated body weight. Overfeeding increased body weight (73.5 +/- 3.1 vs. 78.4 +/- 3.2 kg, P < 0.001) and body fat (14.9 +/- 1.2 vs. 18 +/- 1.1 kg, P < 0.001) in 42 +/- 8 days. Total abdominal fat increased (220 +/- 22 vs. 266 +/- 22 cm(2), P < 0.001) with weight gain, due to increases in both subcutaneous (158 +/- 15 vs. 187 +/- 12 cm(2), P < 0.001) and visceral fat (63 +/- 8 vs. 79 +/- 12 cm(2), P = 0.004). As hypothesized, weight gain elicited increases in MSNA burst frequency (32 +/- 2 vs. 38 +/- 2 burst/min, P = 0.002) and burst incidence (52 +/- 4 vs. 59 +/- 3 bursts/100 heart beats, P = 0.026). Systolic, but not diastolic blood pressure increased significantly with weight gain. The change in MSNA burst frequency was correlated with the percent increase in body weight (r = 0.59, P = 0.022), change in body fat (r = 0.52, P = 0.043) and percent change in body fat (r = 0.51, P = 0.045). The results of the current study indicate that modest diet-induced weight gain elicits sympathetic neural activation in nonobese males. These findings may have important implications for understanding the link between obesity and hypertension.  相似文献   

13.
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease, since rare autosomal dominant mutations are associated with early onset of the disease and alpha-synuclein was found to be a major constituent of Lewy bodies. We have analyzed alpha-synuclein expression in transfected cell lines. In pulse-chase experiments alpha-synuclein appeared to be stable over long periods (t((1)/(2)) 54 h) and no endoproteolytic processing was observed. alpha-Synuclein was constitutively phosphorylated in human kidney 293 cells as well as in rat pheochromocytoma PC12 cells. In both cell lines phosphorylation was highly sensitive to phosphatases, since okadaic acid markedly stabilized phosphate incorporation. Phosphoamino acid analysis revealed that phosphorylation occurred predominantly on serine. Using site-directed mutagenesis we have identified a major phosphorylation site at serine 129 within the C-terminal domain of alpha-synuclein. An additional site, which was phosphorylated less efficiently, was mapped to serine 87. The major phosphorylation site was located within a consensus recognition sequence of casein kinase 1 (CK-1). In vitro experiments and two-dimensional phosphopeptide mapping provided further evidence that serine 129 was phosphorylated by CK-1 and CK-2. Moreover, phosphorylation of serine 129 was reduced in vivo upon inhibition of CK-1 or CK-2. These data demonstrate that alpha-synuclein is constitutively phosphorylated within its C terminus and may indicate that the function of alpha-synuclein is regulated by phosphorylation/dephosphorylation.  相似文献   

14.
15.
目的观察高频刺激丘脑底核对帕金森病(PD)大鼠纹状体中NOS阳性神经元的影响,以探求其作用机制。方法应用6OHDA制备偏侧PD大鼠模型,丘脑底核区埋入刺激电极进行电刺激,采用组织化学方法观察纹状体中NOS阳性神经元的变化。结果PD大鼠纹状体中NOS阳性神经元数与正常大鼠相比明显增加(P<0.01),经电刺激后PD大鼠纹状体NOS阳性神经元数量明显减少,且与正常大鼠相比无显著性差异。结论高频电刺激丘脑底核治疗PD的机制之一可能是与其抑制纹状体NO的过度释放有关。  相似文献   

16.
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.  相似文献   

17.
Autosomal-dominant missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a common genetic cause of PD (Parkinson's disease). LRRK2 is a multidomain protein with kinase and GTPase activities. Dominant mutations are found in the domains that have these two enzyme activities, including the common G2019S mutation that increases kinase activity 2-3-fold. However, there is also a genetic variant in some populations, G2385R, that lies in a C-terminal WD40 domain of LRRK2 and acts as a risk factor for PD. In the present study we show that the G2385R mutation causes a partial loss of the kinase function of LRRK2 and deletion of the C-terminus completely abolishes kinase activity. This effect is strong enough to overcome the kinase-activating effects of the G2019S mutation in the kinase domain. Hsp90 (heat-shock protein of 90 kDa) has an increased affinity for the G2385R variant compared with WT (wild-type) LRRK2, and inhibition of the chaperone binding combined with proteasome inhibition leads to association of mutant LRRK2 with high molecular mass native fractions that probably represent proteasome degradation pathways. The loss-of-function of G2385R correlates with several cellular phenotypes that have been proposed to be kinase-dependent. These results suggest that the C-terminus of LRRK2 plays an important role in maintaining enzymatic function of the protein and that G2385R may be associated with PD in a way that is different from kinase-activating mutations. These results may be important in understanding the differing mechanism(s) by which mutations in LRRK2 act and may also have implications for therapeutic strategies for PD.  相似文献   

18.
目的:观察高频刺激丘脑底核(STN)对帕金森病(PD)大鼠模型纹状体 (STR)神经元自发放电的影响.方法:应用6-羟基多巴胺(6-OHDA)制备偏侧PD大鼠模型,丘脑底核区插入刺激电极进行高频刺激,采用细胞外单位记录的方法观察STR神经元自发放电频率的改变.结果:正常大鼠刺激后STR神经元反应主要以兴奋型反应为主, PD大鼠STR神经元反应主要以兴奋抑制型为主,且随着刺激时间的延长,抑制持续时间逐渐增加,持续时间与刺激时间密切相关(r=0.94).结论:刺激STN可使PD大鼠纹状体的异常放电得到改善,提示高频电刺激STN可作为一种有效的治疗PD的方法.  相似文献   

19.
20.
A concept in Parkinson's disease postulates that motor cortex may pattern abnormal rhythmic activities in the basal ganglia, underlying the genesis of observed motor symptoms. We conducted a preclinical study of electrical interference in the primary motor cortex using a chronic MPTP primate model in which dopamine depletion was progressive and regularly documented using 18F-DOPA positron tomography. High-frequency motor cortex stimulation significantly reduced akinesia and bradykinesia. This behavioral benefit was associated with an increased metabolic activity in the supplementary motor area as assessed with 18-F-deoxyglucose PET, a normalization of mean firing rate in the internal globus pallidus (GPi) and the subthalamic nucleus (STN), and a reduction of synchronized oscillatory neuronal activities in these two structures. Motor cortex stimulation is a simple and safe procedure to modulate subthalamo-pallido-cortical loop and alleviate parkinsonian symptoms without requiring deep brain stereotactic surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号