首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold ("superspreader"). For both cases we assess the impact of several collective strategies of treatment.  相似文献   

3.
《CMAJ》1997,157(6):747
  相似文献   

4.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

5.

Background

Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality.

Results

We investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality.

Conclusion

Conventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease control.  相似文献   

6.
Abstract Samples of head lice and body lice obtained from Ethiopians suffering from double infestations were mounted onto microscope slides and measured. The mean length of body lice (♀ 4.4mm; ♂ 3.8mm) was greater than that of head lice (♀ 3.5 mm; ♂ 2.9mm), but the best discriminant was the length of the tibia of the middle leg (♀ 425/296 μ♂421/291 μ). No intermediate specimens were found in these double infestations, although intermediates can can be produced experimentally by cross-mating. Since populations of head lice and body lice remain distinct it is concluded that they represent two distinct species, Pediculus capitis De Geer and P. humanus Linneaus.  相似文献   

7.

Background  

The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts.  相似文献   

8.
9.
10.
11.
12.
13.
A major fraction of the diversity of insects is parasitic, as herbivores, parasitoids or vertebrate ectopara sites. Understanding this diversity requires information on the origin of parasitism in various insect groups. Parasitic lice (Phthiraptera) are the only major group of insects in which all members are permanent parasites of birds or mammals. Lice are classified into a single order but are thought to be closely related to, or derived from, book lice and bark lice (Psocoptera). Here, we use sequences of the nuclear 18S rDNA gene to investigate the relationships among Phthiraptera and Psocoptera and to identify the origins of parasitism in this group (termed Psocodea). Maximum-likelihood (ML), Bayesian ML and parsimony analyses of these data indicate that lice are embedded within the psocopteran infraorder Nanopsocetae, making the order Psocoptera paraphyletic (i.e. does not contain all descendants of a single common ancestor). Furthermore, one family of Psocoptera, Liposcelididae, is identified as the sister taxon to the louse suborder Amblycera, making parasitic lice (Phthiraptera) a polyphyletic order (i.e. descended from two separate ancestors). We infer from these results that parasitism of vertebrates arose twice independently within Psocodea, once in the common ancestor of Amblycera and once in the common ancestor of all other parasitic lice.  相似文献   

14.
15.
Wolbachia are intracellular bacteria that occur in an estimated 20% of arthropod species. They are of broad interest because they profoundly affect the reproductive fitness of diverse host taxa. Here we document the apparent ubiquity and diversity of Wolbachia in the insect orders Anoplura (sucking lice) and Mallophaga (chewing lice), by detecting single or multiple infections in each of 25 tested populations of lice, representing 19 species from 15 genera spanning eight taxonomic families. Phylogenetic analyses indicate a high diversity of Wolbachia in lice, as evidenced by the identification of 39 unique strains. Some of these strains are apparently unique to lice, whereas others are similar to strains that infect other insect taxa. Wolbachia are transmitted from infected females to their offspring via egg cytoplasm, such that similar species of lice are predicted to have similar strains of Wolbachia. This predicted pattern is not supported in the current study and may reflect multiple events of recent horizontal transmission between host species. At present, there is no known mechanism that would allow for this latter mode of transmission to and within species of lice.  相似文献   

16.
17.
吸虱是寄生于真兽类哺乳动物体表的专性吸血寄生虫,广布于世界各地。云南省已知吸虱昆虫9科13属44种,分别占中国已知吸虱科、属、种的81.82%,59.09%,45.83%。文章参考大量相关文献,从分类阶元、特有物种、动物地理区划和宿主动物4个方面分析云南省吸虱的物种多样性。云南省吸虱特有种有13种,占云南省已知吸虱种类的29.55%,27种为东洋种,15种为古北和东洋两界兼有种,广布种9种。吸虱在5个地理小区的分布,以横断山中部和横断山南部2个地理小区的吸虱物种多样性较高,其它3个区的物种多样性较低。相对于全国而言,云南省吸虱物种多样性较高,吸虱的宿主动物种类丰富。但蚤、恙螨和革螨等其它体表寄生虫相比较,兽类宿主动物体表吸虱的物种多样性明显低于其它体表寄生虫,1科(属)阶元的吸虱其宿主多为相对一致的1个科(属)动物阶元,反映了吸虱宿主特异性较高的事实,吸虱昆虫与其对应的宿主动物已经形成了比较稳定的"一对一"的寄生关系,这是吸虱昆虫与其宿主动物协同进化的生态学表现。  相似文献   

18.
19.
20.
Cophylogenetic relationships between penguins and their chewing lice   总被引:4,自引:0,他引:4  
It is generally thought that the evolution of obligate parasites should be linked intimately to the evolution of their hosts and that speciation by the hosts should cause speciation of their parasites. The penguins and their chewing lice present a rare opportunity to examine codivergence between a complete host order and its parasitic lice. We estimated a phylogeny for all 15 species of lice parasitising all 17 species of penguins from the third domain of the mitochondrial 12S ribosomal rRNA gene, a portion of the mitochondrial cytochrome oxidase subunit 1 gene and 55 morphological characters. We found no evidence of extensive cospeciation between penguins and their chewing lice using TreeMap 2.02beta. Despite the paucity of cospeciation, there is support for significant congruence between the louse and penguin phylogenies due to possible failure to speciate events (parasites not speciating in response to their hosts speciating).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号