首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression.  相似文献   

3.
Liu J  Shen M  Yue Z  Yang Z  Wang M  Li C  Xin C  Wang Y  Mei Q  Wang Z 《Phytomedicine》2012,19(8-9):756-762
Triptolide, a diterpene triepoxide compound extracted from the traditional Chinese medicine herb Tripterygium wilfordii Hook F., is a potential cancer chemotherapeutic for tumors. However, the mechanism of anti-proliferative mechanism of triptolide in colon cancer cells is not entirely clear. Triptolide markedly inhibited HT29 and SW480 cells proliferation in a dose- and time-dependent manner. Triptolide decreased ERK and AKT phosphorylation, and GABPα expression in colon cancer cells. Beta-catenin expression and phosphorylation were not altered by incubation of triptolide. However, we found that triptolide repressed expression of LEF/TCF. Although it did not significantly affect cells apoptosis, triptolide induced G1 phase arrest dose-dependently. Further detection for the expression of cell cycle-related proteins suggesting that triptolide stimulate expression of p21 and repress cyclin A1. Increased p21 binded to CDK4/CDK6, therefore blocked function of CDK4/CDK6, and subsequently contribute to the G1 arrest. These data suggested that triptolide is a potential agent for treatment of colon cancer, and its anti-proliferation effect mainly occur through G1 phase arrest.  相似文献   

4.
Prostate cancer is the most common malignancy in men in developed countries. In previous study, we identified HNF1B (Hepatocyte Nuclear Factor 1β) as a downstream effector of Enhancer of zeste homolog 2 (EZH2). HNF1B suppresses EZH2‐mediated migration of two prostate cancer cell lines via represses the EMT process by inhibiting SLUG expression. Besides, HNF1B expression inhibits cell proliferation through unknown mechanisms. Here, we demonstrated that HNF1B inhibited the proliferation rate of prostate cancer cells. Overexpression of HNF1B in prostate cancer cells led to the arrest of G1 cell cycle and decreased Cyclin D1 expression. In addition, we re‐explored data from ChIP‐sequencing (ChIP‐seq) and RNA‐sequencing (RNA‐seq), and demonstrated that HNF1B repressed Cyclin D1 via direct suppression of SMAD6 expression. We also identified CDKN2A as a HNF1B‐interacting protein that would contribute to HNF1B‐mediated repression of SMAD6 expression. In summary, we provide the novel mechanisms and evidence in support HNF1B as a tumour suppressor gene for prostate cancer.  相似文献   

5.
6.
7.
8.
G protein-coupled receptors (GPRs) are highly related to oncogenesis and cancer metastasis. G protein-coupled re- ceptor 137 (GPR137) was initially reported as a novel orphan GPR about 10 years ago. Some orphan GPRs have been implicated in human cancers. The aim of this study is to investigate the role of GPR137 in human colon cancer. Expression levels of GRP137 were analyzed in different colon cancer cell lines by quantitative polymerase chain re- action and western blot analysis. Lentivirus-mediated short hairpin RNA was specifically designed to knock down GPR137 expression in colon cancer cells. Cell viability was measured by methylthiazoletetrazolium and colony forma- tion assays. In addition, cell cycle characteristic was investi- gated by flow cytometry. GRP137 expression was observed in aH seven colon cancer cell lines at different levels. The mRNA and protein levels of GPR137 were down-regulated in both HCTll6 and RKO cells after lentivirus infection. Lentivirus-mediated silencing of GPR137 reduced the proliferation rate and colonies numbers. Knockdown of GPR137 in both cell lines led to cell cycle arrest in the G0/G1 phase. These results indicated that GPR137 plays an important role in colon cancer cell proliferation. A better understanding of GPR137's effects on signal transduction pathways in colon cancer cells may provide insights into the novel gene therapy of colon cancer.  相似文献   

9.

Background

Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors.

Methods and Findings

In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis.

Conclusions

These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.  相似文献   

10.
11.
12.
Triptolide (TP),a traditional Chinese medicine,has been reported to be effective in thetreatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines.Thisstudy investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia(K562),and elucidates the possible molecular mechanism involved.SW114 and K562 cells were treatedwith different doses of TP (0,5,10,20,or 50 ng/ml).The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation ofboth tumor cell lines in a dose-dependent manner.To further investigate its mechanisms,the productsprostaglandin E_2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay(ELISA).Our data showed that TP strongly inhibited the production of NO and PGE_2. Consistent with theseresults,the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulatedboth at the mRNA level and the protein expression level,as shown by real-time RT-PCR and Westernblotting.These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activitycould be involved in the antitumor mechanisms of TP.  相似文献   

13.
SUMO (small ubiquitin-related modifier) modulates protein structure and function by covalently binding to the lysine side chains of the target proteins. Yeast cells contain two SUMO proteases, Ulp1 and Ulp2, that cleave sumoylated proteins in the cell. Ulp1 (SUMO protease 1) processes the SUMO precursor to its mature form and also de-conjugates SUMO from side chain lysines of target proteins. Here we demonstrate that attachment of SUMO to the N-terminus of under-expressed proteins dramatically enhances their expression in E. coli. SUMO protease 1 was able to cleave a variety of SUMO fusions robustly and with impeccable specificity. Purified recombinant SUMO-GFPs were efficiently cleaved when any amino acid, except proline, was in the+1 position of the cleavage site. The enzyme was active over a broad range of buffer and temperature conditions. Purification of certain recombinant proteins is accomplished by production of Ub-fusions from which Ub can be subsequently removed by de-ubiquitinating enzymes (DUBs). However, DUBs are unstable enzymes that are difficult to produce and inexpensive DUBs are not available commercially. Our findings demonstrate that SUMO protease 1/SUMO-fusion system may be preferable to DUB/Ub-fusion. Enhanced expression and solubility of proteins fused to SUMO combined with broad specificity and highly efficient cleavage properties of the SUMO protease 1 indicates that SUMO-fusion technology will become a useful tool in purification of proteins and peptides.  相似文献   

14.

Background

Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1) phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition.

Methodology/Principal Finding

Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701) as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta) protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells.

Conclusions/Significance

Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.  相似文献   

15.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

16.
Prostate cancer is the most highly diagnosed cancer in men worldwide. It is characterized by high proliferation, great invasion and metastatic potential. Sodium channel subtypes have been identified as highly expressed in different prostate cancer cell lines. In this study, we have screened the negatively charged fractions of Androctonus australis (Aa) scorpion venom to identify active peptides on DU145 prostate cancer cells proliferation. The most active compound was identified to be the sodium channel peptide AaHIV with an IC50 value of 15 μM. At this concentration, AaHIV had low effect on the adhesion of DU145 cells to fibronectin. When compared to other Na+ channel Aa toxins, AaHIV was found to be 2 times more active than AaHI and AaHII on DU145 cells proliferation and slightly less active than AaHII on their adhesion. The three peptides are inactive on DU145 cells migration. AaHIV was found to be 16 times more active than veratridine, asteroidal alkaloid from plants of the lily family widely used as a sodium channel activator. Electrophysiological experiments showed that the AaHIV toxin activates Nav1.6 channel, suggesting that this sodium channel subtype is implicated in the proliferation of DU145 prostate cancer cells.  相似文献   

17.
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.  相似文献   

18.
Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment.  相似文献   

19.
Modification of proteins by small ubiquitin-like modifier (SUMO) plays an important role in the function, compartmentalization, and stability of target proteins, contributing to the regulation of diverse processes. SUMO-1 modification can be regulated not only at the level of conjugation; it may also be reversed by a class of proteases known as the SUMO-specific proteases. However, current understanding of the regulation, specificity, and function of these proteases remains limited. In this study, we characterize aspects of the compartmentalization and proteolytic activity of the mammalian SUMO-specific protease, SENP1, providing insight into its function and regulation. We demonstrate the presence of a single nonconsensus nuclear localization signal within the N terminus of the protein, the mutation of which results in pronounced cytoplasmic accumulation in contrast to the nuclear accumulation of the parental protein. In addition, we observe that the N terminus of the protein may be essential for the correct regulation of the protease, since expression of the core domain alone results in limited expression and loss of SUMO-1, indicative of constitutive catalytic activity. Consistent with the prediction that the protease is a member of the cysteine family of proteases, we mutated a key cysteine residue and observed that expression of this catalytic mutant had a dominant negative phenotype, resulting in the accumulation of high molecular weight SUMO-1 conjugates. Furthermore, we demonstrate that SENP1 may itself be a target for SUMO-1 modification occurring at a nonconsensus site. Finally, we demonstrate that SENP1 localization is influenced by expression and localization of SUMO-1-conjugated target proteins within the cell.  相似文献   

20.
Increasing reports have demonstrated that aberrant expression of microRNAs (miRNAs) is found in multiple human cancers. Many studies have shown that down-regulated level of miR-30a is in a variety of cancers including prostate cancer (PCa). However, the precise mechanisms of miR-30a in PCa have not been well explored. In this study, we investigated the biological functions and molecular mechanism of miR-30a in PCa cell lines, discussing whether it could be a therapeutic biomarker of PCa in the future. We found that miR-30a is down-regulated in PCa tissues and cell lines. Moreover, the low level of miR-30a was associated with increased expression of SIX1 in PCa tissues and cell lines. Up-regulation of miR-30a significantly inhibited proliferation of PCa cells. In addition, invasion of PCa cells was suppressed by overexpression of miR-30a. However, down-regulation of miR-30a promoted cell growth and invasion of PCa cells. Bioinformatics analysis predicted that the SIX1 was a potential target gene of miR-30a. Next, luciferase reporter assay confirmed that miR-30a could directly target SIX1. Consistent with the effect of miR-30a, down-regulation of SIX1 by siRNA inhibited proliferation and invasion of PCa cells. Overexpression of SIX1 in PCa cells partially reversed the effect of miR-30a mimic. In conclusion, introduction of miR-30a dramatically inhibited proliferation and invasion of PCa cells by down-regulating SIX1 expression, and that down-regulation of SIX1 was essential for inhibition of cell growth and invasion of PCa cells by overexpression of miR-30a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号