首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report that a novel member of the TNF-alpha family, TNF-related apoptosis-inducing ligand (TRAIL), contributes substantially to amyloid-induced neurotoxicity in human SH-SY5Y neuronal cell line. Involvement of TRAIL in the amyloid-induced cell death is supported by cDNA array, Northern blot, and Western blot data, demonstrating increased TRAIL expression after treatment of the cells with a neurotoxic fragment of amyloid protein (betaAP). TRAIL was also found to be released in the culture media after betaAP treatment with a time-course overlapping to contents of the intracellular protein. Contribution of TRAIL to betaAP neurotoxicity is demonstrated by data showing that TRAIL-neutralizing monoclonal antibody protects neuronal SH-SY5Y cells from betaAP neurotoxicity. Moreover, exposure of neuronal SH-SY5Y cells to TRAIL leads to cell death, indicating that this substance per se is endowed with neurotoxic properties. We also found that, similarly to betaAP and TRAIL, activation of the death-domain adaptor protein FADD results in neuronal cell death. Lack of FADD function, by overexpression of its dominant negative, rescued cells from either TRAIL- or betaAP-induced neurotoxicity, supporting the hypothesis that these three molecules share common intracellular pathways. Finally, we found that betaAP strongly activated caspase-8, and the cell-permeable, selective caspase-8 inhibitor z-IETD-FMK prevents both betaAP- and TRAIL-induced neurotoxicity. In view of TRAIL's potency in inducing neuronal death, and its role as mediator of betaAP, it is plausible to hypothesize that TRAIL can be regarded as a molecule that provides substantial contribution to betaAP-dependent cell death, which takes part in the progression of the neurodegenerative process and related chronic inflammatory response.  相似文献   

2.
Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by alpha(v)beta(3) integrin ligation, downstream activation of nuclear factor-kappaB, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the alpha(v)beta(3) ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-d-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-d-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors  相似文献   

3.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

4.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

5.
TRAIL signalling: decisions between life and death   总被引:6,自引:0,他引:6  
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.  相似文献   

6.
Patients with malignant gliomas have a poor prognosis and new treatment paradigms are needed against this disease. TRAIL/Apo2L selectively induces apoptosis in malignant cells sparing normal cells and is hence of interest as a potential therapeutic agent against gliomas. To determine the factors that modulate sensitivity to TRAIL, we examined the differences in TRAIL-activated signaling pathways in glioma cells with variable sensitivities to the agent. Apoptosis in response to TRAIL was unrelated to DR5 expression or endogenous p53 status in a panel of 8 glioma cell lines. TRAIL activated the extrinsic (cleavage of caspase-8, caspase-3 and PARP) and mitochondrial apoptotic pathways and reduced FLIP levels. It also induced caspase-dependent JNK activation, which did not influence TRAIL-induced apoptosis. Because the pro-survival PI3K/Akt pathway is highly relevant to gliomas, we assessed whether Akt could protect against TRAIL-induced apoptosis. Pretreatment with SH-6, a novel Akt inhibitor, enhanced TRAIL-induced apoptosis, suggesting a protective role for Akt. Conversely, TRAIL induced caspase-dependent cleavage of Akt neutralizing its anti-apoptotic effects. These results demonstrate that TRAIL-induced apoptosis in gliomas involves both activation of death pathways and downregulation of survival pathways. Additional studies are warranted to determine the therapeutic potential of TRAIL against gliomas.Supported in part by the NIH grant PO1 CA55261  相似文献   

7.
8.
As a single signal, retinoids induce terminal differentiation. This implies that they activate differentiation and apoptosis in a temporally defined order to allow expression of the differentiated phenotype well before death. We report that two apparently contradictory retinoid-induced programs have the capacity to define cellular life span. Anti-apoptotic factors are activated concomitantly with differentiation, while retinoids induce at the same time also pro-apoptotic signaling. We have assessed the roles of two key factors, Bcl2A1 and TRAIL, in the temporal programming of cell death and differentiation. We demonstrate that PLB985 are type II cells in which TRAIL induces apoptosis through the extrinsic and--via Bid activation--also the intrinsic death pathways. Bcl2A1, ectopically over-expressed, or endogenously induced by retinoic acid receptor agonists, protected cells from apoptosis triggered by TRAIL, whose induction required the activation of both the retinoic acid and retinoid X receptors. Bcl2A1 prevented loss of mitochondrial membrane potential and caspase-9, but not caspase-8, activation. The expression of anti-sense Bcl2A1 sensitized PLB985 cells to TRAIL. Co-culture experiments revealed protection from fraternicide if sister cells were pre-exposed to retinoic acid. Collectively, our data support a model in which retinoids orchestrate a life span-regulatory program comprising Bcl2A1 induction to temporally protect against concomitantly induced TRAIL death signaling. Termination of this life span in presence of Bcl2A1 is most likely a consequence of the Bid-independent TRAIL action. Thus, depending on the retinoic acid and retinoid X receptor activation potential of a ligand and the relative efficacies of the intrinsic and extrinsic death pathways in a given cell, a single retinoid triggers the life span of a differentiated phenotype.  相似文献   

9.
RAS oncogenes play a major role in cancer development by activating an array of signaling pathways, most notably mitogen-activated protein kinases, resulting in aberrant proliferation and inhibition of apoptotic signaling cascades, rendering transformed cells resistant to extrinsic death stimuli. However, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to kill specific tumor cells through the engagement of its receptors, death receptor 4 (DR4) and death receptor 5 (DR5), and the activation of apoptotic pathways, providing promising targets for anticancer therapies. In this study, we show that TRAIL induces cell death in human colon adenocarcinoma cells in a MEK-dependent manner. We also report a prolonged MEK-dependent activation of ERK1/2 and increased c-FOS expression induced by TRAIL in this system. Our study reveals that transformation of the colon cell line Caco-2 by Ki- and mainly by Ha-ras oncogenes sensitizes these cells to TRAIL-induced apoptosis by causing specific MEK-dependent up-regulation of DR4 and DR5. These observations taken together reveal that RAS-MEK-ERK1/2 signaling pathway can sensitize cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 and overall imply that TRAIL-based therapeutic strategies using TRAIL agonists could be used in cases of human colon cancers bearing RAS mutations.  相似文献   

10.
Glioblastoma (GBM) is the most aggressive form of primary brain tumour, with dismal patient outcome. Treatment failure is associated with intrinsic or acquired apoptosis resistance and the presence of a highly tumourigenic subpopulation of cancer cells called GBM stem cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising novel therapy for some treatment-resistant tumours but unfortunately GBM can be completely resistant to TRAIL monotherapy. In this study, we identified Mcl-1, an anti-apoptotic Bcl-2 family member, as a critical player involved in determining the sensitivity of GBM to TRAIL-induced apoptosis. Effective targeting of Mcl-1 in TRAIL resistant GBM cells, either by gene silencing technology or by treatment with R-roscovitine, a cyclin-dependent kinase inhibitor that targets Mcl-1, was demonstrated to augment sensitivity to TRAIL, both within GBM cells grown as monolayers and in a 3D tumour model. Finally, we highlight that two separate pathways are activated during the apoptotic death of GBM cells treated with a combination of TRAIL and R-roscovitine, one which leads to caspase-8 and caspase-3 activation and a second pathway, involving a Mcl-1:Noxa axis. In conclusion, our study demonstrates that R-roscovitine in combination with TRAIL presents a promising novel strategy to trigger cell death pathways in glioblastoma.  相似文献   

11.
Barblu L  Herbeuval JP 《PloS one》2012,7(3):e32874
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.  相似文献   

12.
Malignant peripheral nerve sheath tumor (MPNST) is a rare aggressive form of sarcoma often associated with the tumor syndrome neurofibromatosis type 1 (NF1). We investigated the effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on NF1 associated MPNST and determinants of TRAIL sensitivity. MPNST cell lines with complete neurofibromin deficiency were sensitive to apoptotic cell death induced by TRAIL whereas MPNST cells with retained neurofibromin expression or normal human Schwann cells were resistant. Increased sensitivity to TRAIL was associated with overexpression of death receptors, especially DR5. Re-expression of the GAP related domain of neurofibromin (NF1-GRD) suppressed DR5 expression and decreased sensitivity to TRAIL. We show that death receptor expression and TRAIL sensitivity critically depend on c-MYC and that c-MYC amounts are increased by MEK/ERK and PI3K/AKT signalling pathways which are suppressed by neurofibromin. Furthermore PI3K/AKT signalling strongly suppresses the MYC-antagonist MAD1 which significantly contributes to TRAIL sensitivity. Re-expression of the NF1-GRD decreased c-MYC and increased MAD1 amounts suggesting that neurofibromin influences TRAIL sensitivity at least in part by modulating the MYC/MAX/MAD network. The phytochemical curcumin further increased the sensitivity of neurofibromin deficient MPNST cells to TRAIL. This was presumably mediated by ROS, as it correlated with increased ROS production, was blocked by N-acetylcysteine and mimicked by exogenous ROS.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis and preferentially kills tumor cells by engaging specific glycosylated death receptors, resulting in the internalization of ligand/receptor complexes and recruitment of the initiator caspase-8 to an activation platform known as the death-inducing signaling complex (DISC). However, emergence of TRAIL-resistant sub-populations may contribute to therapeutic failure. To investigate resistance mechanisms, we isolated a stable TRAIL-resistant sub-population of the metastatic colon cancer cell line LS-LIM6, designated LIM6-TR. LIM6-TR cells are impaired in endocytosis of TRAIL/death receptors complexes and failed to recruit/activate caspase-8 to the DISC upon TRAIL stimulation. Differential activation of Wnt and JNK pathways is not responsible for acquisition of TRAIL resistance. LIM6-TR cells display a marked increase in cell-surface expression of galectin-3, an endogenous lectin, which co-localizes with and binds death receptors. Silencing of galectin-3 restores TRAIL sensitivity and promotes TRAIL-mediated endocytosis of TRAIL/death receptors complexes. Inhibitors of galectin-3 and glycosylation also re-sensitize LIM6-TR to TRAIL and restore internalization of ligand/receptors complexes. These studies identify a novel TRAIL-resistance mechanism in which galectin-3 impedes trafficking of death receptor by anchoring them in glycan nano-clusters, blocking the execution of the apoptosis signal.  相似文献   

14.
15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

16.
17.
Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice.  相似文献   

18.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   

19.
20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand can activate non-canonical cell survival or proliferation pathways in resistant tumor cells through the same death receptors, which is counterproductive for therapy. Even more, recent studies indicate metastases-promoting activity of TRAIL. In this review, the remarkable dichotomy in TRAIL signaling is highlighted. An overview of the currently known mechanisms involved in non-canonical TRAIL signaling and the subsequent activation of various kinases is provided. These kinases include RIP1, IκB/ NF-κB, MAPK p38, JNK, ERK1/2, MAP3K TAK1, PKC, PI3K/Akt and Src. The functional consequences of their activation, often being stimulation of tumor cell survival and in some cases enhancement of their invasive behavior, are discussed. Interestingly, the non-canonical responses triggered by TRAIL in resistant tumor cells resemble that of TRAIL-induced signals in non-transformed cells. Better knowledge of the mechanism underlying the dichotomy in TRAIL receptor signaling may provide markers for selecting patients who will likely benefit from TRAIL-based therapy and could provide a rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号