首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes, such as T-cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. We determined that active MEKK3 was capable of activating calcineurin/nuclear factor of activated T-cells (NFAT) signaling in cardiac myocytes and reprogramming cardiac gene expression. In contrast, small interference RNA directed against MEKK3 and a dominant negative form of MEKK3 caused the reduction of NFAT activation in response to angiotensin II in cardiac myocytes. Genetic studies showed that MEKK3-deficient mouse embryo fibroblasts failed to activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring MEKK3 to the MEKK3-deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. We determined that angiotensin II induced MEKK3 phosphorylation. Thus, MEKK3 functions downstream of the AT1 receptor and is essential for calcineurin/NFAT activation. Finally, we determined that MEKK3-mediated activation of calcineurin/NFAT signaling was associated with the phosphorylation of modulatory calcineurin-interacting protein 1 at Ser(108) and Ser(112). Taken together, our studies reveal a previously unrecognized novel essential regulatory role of MEKK3 signaling in calcineurin/NFAT activation.  相似文献   

9.
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Hao S  Kurosaki T  August A 《The EMBO journal》2003,22(16):4166-4177
NFAT and SRF are important in the regulation of proliferation and cytokine production in lymphocytes. NFAT activation by the B cell receptor (BCR) occurs via the PLCgamma-Ca(2+)-calcineurin pathway, however how the BCR activates SRF is unclear. We show here that like NFAT, BCR regulation of SRF occurs via an Src-Syk-Tec-PLCgamma-Ca(2+) (Lyn-Syk-Btk-PLCgamma-Ca(2+)) pathway. However, SRF responds to lower Ca(2+) and is less dependent on IP(3)R expression than NFAT. Ca(2+)-regulated calcineurin plays a partial role in SRF activation, in combination with diacylglycerol (DAG), while is fully required for NFAT activation. Signals from the DAG effectors protein kinase C, Ras and Rap1, and the downstream MEK-ERK pathway are required for both SRF and NFAT; however, NFAT but not SRF is dependent on JNK signals. Both SRF and NFAT were also dependent on Rac, Rho, CDC42 and actin. Finally, we show that Ca(2+) is not required for ERK activation, but instead for its association with nuclear areas of the cell. These data suggest that combinatorial assembly of signaling pathways emanating from the BCR differentially regulate NFAT and SRF, to activate gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号