首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biocatalytic enantioselective reduction of 4′-methoxyacetophenone to (S)-1-(4-methoxyphenyl)ethanol was successfully conducted in a hydrophilic IL-containing co-solvent system using immobilized Rhodotorula sp. AS2.2241 cells. Of all the tested ILs, the best results were observed with the novel IL 1-(2′-hydroxy)ethyl-3-methylimidazolium nitrate (C2OHMIM·NO3), which showed a good biocompatibility with the cells and increased the cell membrane permeability moderately, thus improving the efficiency of the bioreduction. To better understand the bioreduction, several crucial influential variables were also examined. The optimal C2OHMIM·NO3 content, buffer pH, reaction temperature and substrate concentration were 5.0% (v/v), 8.5, 25 °C and 12 mM, respectively. Under the optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 9.8 μmol/h gcell, 98.3% and >99%, respectively, which are much better than the results previously reported. The established biocatalytic system has proven to be highly effective for the reduction of other aryl ketones. Also, the cells exhibited excellent operational stability in the presence of C2OHMIM·NO3. Moreover, the ILs can accumulate within the cells, suggesting that ILs are likely to interact with the related enzymes within the cells.  相似文献   

2.
ABSTRACT: BACKGROUND: Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs), to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS) to (R)-1-trimethylsilylethanol {(R)-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. RESULTS: It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C4mim * PF6)/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v), 6.0, 30 degreesC and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1 mumol/min gcwm, 98.6 % and >99 %, respectively. The efficient whole-cell biocatalytic process was shown to be feasible on a 450-mL scale. Moreover, the immobilized cells remained around 87 % of their initial activity even after being used repeatedly for 8 batches in the C4mim * PF6/buffer biphasic system, exhibiting excellent operational stability. CONCLUSIONS: For the first time, we have successfully utilized immobilized Candida parapsilosis CCTCC M203011 cells, for efficiently catalyzing anti-Prelog enantioselective reduction of ATMS to enantiopure (R)-1-TMSE in the C4mim * PF6/buffer biphasic system. The substantially improved biocatalytic process appears to be effective and competitive on a preparative scale.  相似文献   

3.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

4.
Immobilized Candida antarctica lipase B (Novozym 435)-catalyzed enantioselective hydrolysis of D,L-phenylglycine methyl ester to enatiopure D-phenylglycine was successfully conducted in the systems with ionic liquids (ILs). Novozym 435 exhibited excellent activity and enantioselectivity in the system containing the IL BMIMxBF(4) compared to several typical organic solvents tested. It has been found that the cations and, particularly, the anions of ILs have a significant effect on the reaction, and the IL BMIMxBF(4), which shows to be the most suitable for the reaction, gave the highest initial rate and enantioselectivity among various ILs examined. The reaction became much less active and enantioselective in the systems with BMIMxHSO(4). Also, it was noticed that the enzymatic hydrolysis was strongly dependent on BMIMxBF(4) content in the co-solvent systems and the favorable content of the IL was 20% (v/v). Of the assayed four co-solvents and phosphate buffer, the lowest apparent K(m) and activation energy, and the highest V(max) of the reaction were achieved using 20% (v/v) BMIMxBF(4) co-solvent with phosphate buffer. Additionally, various influential variables were investigated. The optimum pH, substrate concentration, reaction temperature and shaking rate were 8.0, 80mM, 25-30 degrees Celsius and 150rpm, respectively, under which the initial rate, the residual substrate e.e. and the enantioselectivity were 2.46mM/min, 93.8% (at substrate conversion of 53.0%) and 38, respectively. When the hydrolysis was performed under reduced pressure, the initial rate (2.64mM/min) and the enantioselectivity (E=43) were boosted.  相似文献   

5.

Background  

Whole cells are usually employed for biocatalytic reduction reactions to ensure efficient coenzyme regeneration and to avoid problems with enzyme purification and stability. The efficiency of whole cell-catalyzed bioreduction is frequently restricted by pronounced toxicity of substrate and/or product to the microbial cells and in many instances the use of two-phase reaction systems can solve such problems. Therefore, we developed new, biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs) as alternatives to conventional organic solvents, in order to improve the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one (TMSB) to (S)-4-(trimethylsilyl)-3-butyn-2-ol {(S)-TMSBOL}, a key intermediate for synthesis of 5-lipoxygenase inhibitors, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst.  相似文献   

6.
阿托伐他汀可通过抑制HMG-CoA还原酶与底物的结合来抑制胆固醇的合成,而 (R)-3-羟基-5-邻苯二甲酰亚胺基戊酸乙酯是阿托伐他汀合成的重要中间体。通过对实验室保藏菌种进行筛选,得到一株巴氏毕赤酵母X-33可将5-邻苯二甲酰亚胺-3-氧代戊酸乙酯还原为 (R)-3-羟基-5-邻苯二甲酰亚胺基戊酸乙酯。在磷酸盐缓冲液体系中考察了初始底物浓度、反应时间、辅助底物、葡萄糖添加量、pH、温度等因素对产物收率和对映体选择性的影响,获得了较佳的反应条件。选择底物投料量为7 g/L时,当菌体浓度120 g/L,葡萄  相似文献   

7.
Methods for the immobilization of lipases and their use for ester synthesis   总被引:5,自引:0,他引:5  
The lipase from Pseudomonas fluorescens was immobilized onto five different carriers: celite, octyl-silica, aminopropyl-silica, gluterdialdehyde-activated silica and Eupergit C250L. Activities and operational stabilities of the prepared catalysts were compared using the enantioselective acylation of (R,S)-1-phenylethanol by vinyl acetate as acyl donor and t-butylmethyl ether with variable water content (0.038-0.97% v/v) as reaction medium. The above carriers provide catalysts with widely different specific activities ranging from excellent 25 mmol/h mg protein (celite) to 0.07 mmol/h mg protein (glutardialdehyde-activated silica) on the lower end. The lipase immobilized onto Eupergit C250L exhibited the best operational stability among the catalysts studied. It retained 30% of its initial activity after 11 cycles of application, each with a duration between 2 and 6 h.  相似文献   

8.
Lou WY  Zong MH 《Chirality》2006,18(10):814-821
Efficient enantioselective acylation of (R,S)-1-trimethylsilylethanol {(R,S)-1-TMSE} with vinyl acetate catalyzed by immobilized lipase from Candida antarctica B (i.e., Novozym 435) was successfully conducted in ionic liquids (ILs). A remarkable enhancement in the initial rate and the enantioselectivity of the acylation was observed by using ILs as the reaction media when compared to the organic solvents tested. Also, the activity, enantioselectivity, and thermostability of Novozym 435 increased with increasing hydrophobicity of ILs. Of the six ILs examined, the IL C4MIm.PF6 gave the fastest initial rate and the highest enantioselectivity, and was consequently chosen as the favorable medium for the reaction. The optimal molar ratio of vinyl acetate to (R,S)-1-TMSE, water activity, and reaction temperature range were 4:1, 0.75, and 40 -50 degrees C, respectively, under which the initial rate and the enantioselectivity (E value) were 27.6 mM/h and 149, respectively. After a reaction time of 6 h, the ee of the remaining (S)-1-TMSE reached 97.1% at the substrate conversion of 50.7%. Additionally, Novozym 435 was effectively recycled and reused in C4MIm.PF6 for five consecutive runs without substantial lose in activity and enantioselectivity. The preparative scale kinetic resolution of (R,S)-1-TMSE in C4MIm.PF6 is shown to be very promising and useful for the industrial production of enantiopure (S)-1-TMSE.  相似文献   

9.
Direct transesterification of (R,S)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol (rac-CDPP) (a key intermediate in the synthesis of the chiral drug (S)-lubeluzole) with vinyl butyrate by lipases from Pseudomonas aeruginosa (P. aeruginosa) MTCC 5113 was performed in hexane with ionic liquids (ILs) 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIm][PF6] and 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIm][BF4] as co-solvents. The maximum conversion (>49%) and enantiomeric excess (ee > 99.9%) was achieved in 6 h of incubation at 30 °C with [BMIm][PF6] as co-solvent in a two-phase system. The enzyme was able to perform with the same specificity even at 60 °C in the presence of ILs. It was possible to use lipases repeatedly for more than 10 times while still maintaining absolute enantioselectivity and reactivity. Stability studies on lipases from P. aeruginosa in ILs revealed the fact that the enzyme constancy and the reactivity in catalyzing transesterification of rac-CDPP into (S)-1-chloro-3-(3,4-difluorophenoxy)-2-butanoate was of the order of [BMIm][PF6] > [BMIm][BF4] in two-phase system.  相似文献   

10.
从实验室保藏的菌株中筛选获得Candida sp.PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida on-tarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%;底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。  相似文献   

11.
通过海藻酸钠/纤维素硫酸钠-聚二甲基二烯丙基氯化铵(SA/NaCS-PDMDAAC)微胶囊固定化酵母细胞将胞苷一磷酸(CMP)转化为胞苷三磷酸(CTP),考察了各种因素条件对CTP转化率的影响,以提高CTP的转化率.通过考察分批补料添加葡萄糖,固定化酵母量,CMP浓度等以达到提高CTP转化率的要求.结果在250 mL锥...  相似文献   

12.
A hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) was successfully employed as co-solvent for asymmetric bioreduction of ethyl acetoacetate (EOB) to ethyl (R)-3-hydroxybutyrate (R-EHB) catalyzed by Pichia membranaefaciens Hansen ZJPH07 cells. The results demonstrated that the addition of [BMIM]BF4 in reaction system can markedly reduce the substrate inhibition and moderately improve the enantioselectivity compared to that in monophasic aqueous system. Among different alcohols and carbohydrates tried as co-substrate, glucose was a proper electron donor. Although isopropanol gave the best enantioselectivity with the highest yield, S-enantiomer was obtained. To optimize the bioreduction, some reaction parameters for the biosynthesis of R-EHB in this IL-containing system were investigated, such as temperature, buffer pH, shaking speed, substrate concentration, wet cells concentration and reaction time. Under the optimum conditions, best conversion of 77.8% and product enantiomeric excess (e.e.) of 73.0% were obtained. A comparative study was performed either in the presence or in the absence of [BMIM]BF4, higher reaction yield (77.8% versus 68.5%) and product e.e. (73.0% versus 65.1%) were observed in IL-containing system with 0.55 M of the substrate, but 0.35 M of substrate concentration for the reduction in aqueous system without the addition of [BMIM]BF4.  相似文献   

13.
An efficient procedure for enzymatic desymmetrization of the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG) in an aqueous–organic phase was successfully developed to prepare methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG). Novozym 435 was selected as a highly efficient biocatalyst through lipase screening. The effects of various parameters in terms of co-solvent and its concentration, buffer pH, ionic strength and reaction temperature, on the reaction were investigated. It was found that 0.2 M phosphate buffer (pH 8.0) containing 20% MTBE (v/v) was the optimum reaction medium, and the optimum reaction temperature was 30 °C. Under the optimized reaction conditions, (R)-3-MFG was obtained in 95.6% ee value and 92.6% yield after 64 h when the concentration of 3-DFG and Novozym 435 were 200 mmol/l and 20 g/l respectively. Furthermore, Novozym 435 showed an excellent operational stability, retaining above 95% of the initial activity and enantioselectivity after 10 cycles of reaction. The developed method has a potential to be used for efficient enzymatic production of (R)-3-MFG.  相似文献   

14.
Thermophilic biohydrogen production from glucose with trickling biofilter   总被引:3,自引:0,他引:3  
Thermophilic H2 production from glucose was studied at 55-64 degrees C for 234 days using a continuous trickling biofilter reactor (TBR) packed with a fibrous support matrix. Important parameters investigated included pH, temperature, hydraulic retention time (HRT), and glucose concentration in the feed. The optimal pH and temperature were 5.5 and 60 degrees C, respectively. With decreasing HRT or increasing inlet glucose concentration, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The biogas composition was almost constant at 53 +/- 4% (v/v) of H2 and 47 +/- 4% (v/v) of CO2. No appreciable CH4 was detected when the reactor was under a normal operation. The carbon mass balance showed that, in addition to cell mass, lactate, n-butyrate, CO2, and acetate were major products that comprised more than 85% of the carbon consumed. The maximal volumetric H2 production rate and H2 yield to glucose were 1,050 +/- 63 mmol H2/l.d and 1.11 +/- 0.12 mol H2/mol glucose, respectively. These results indicate that the thermophilic TBR is superior to most suspended or immobilized reactor systems reported thus far. This is the first report on continuous H2 production by a thermophilic TBR system.  相似文献   

15.
The synthesis of poly(A)-containing RNA by isolated mitochondria from Ehrlich ascites cells was studied. Isolated mitochondria incorporate [3H]AMP or [3H]UTP into an RNA species that adsorbs on oligo (dT)-cellulose columns or Millipore filters. Hydrolysis of the poly(A)-containing RNA with pancreatic and T1 ribonucleases released a poly(A) sequence that had an electrophoretic mobility slightly faster than 4SE. In comparison, ascites-cell cytosolic poly(A)-containing RNA had a poly(A) tail that had an electrophoretic mobility of about 7SE. Sensitivity of the incorporation of [3H]AMP into poly(A)-containing RNA to ethidium bromide and to atractyloside and lack of sensitivity to immobilized ribonuclease added to the mitochondria after incubation indicated that the site of incorporation was mitochondrial. The poly(A)-containing RNA sedimented with a peak of about 18S, with much material of higher s value. After denaturation at 70 degrees C for 5 min the poly(A)-containing RNA separated into two components of 12S and 16S on a 5-20% (w/v) sucrose density gradient at 4 degrees C, or at 4 degrees and 25 degrees C in the presence of formaldehyde. Poly(A)-containing RNA synthesized in the presence of ethidium bromide sedimented at 5-10S in a 15-33% (w/v) sucrose density gradient at 24 degrees C. The poly(A) tail of this RNA was smaller than that synthesized in the absence of ethidium bromide. The size of the poly(A)-containing RNA (approx. 1300 nucleotides) is about the length necessary for that of mRNA species for the products of mitochondrial protein synthesis observed by ourselves and others.  相似文献   

16.
Regioselective acylation of 1-β-d-arabinofuranosylcytosine (ara-C), using vinyl benzoate (VB) as acyl donor and Novozym 435 as catalyst, was carried out in various reaction media including pure organic solvents, organic solvent mixtures, and ionic liquid (IL)-containing systems. Although the reaction was highly regioselective in all the media assayed, remarkable enhancement of substrate conversion was achieved with a co-solvent mixture of 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIm·PF6) and pyridine as the reaction medium, compared with other media tested. Additionally, the results demonstrated that the anions of ILs had a significant effect on the initial rate and substrate conversion. To better understand the reaction performed in IL-containing system, several variables were examined. The optimum molar ratio of VB to ara-C, initial water activity, temperature and shaking rate were 25:1, 0.11, 40°C and 250rpm, respectively. Under these optimum reaction conditions, the initial rate, substrate conversion, and regioselectivity were 0.49mMmin?1, 99.4 and 99%, respectively. The product of the lipase-catalyzed reaction was characterized by 13C NMR and was shown to be 5′-O-benzoyl ara-C.  相似文献   

17.
Rhodotorula sp. AS2.2241, a newly isolated strain, was used as biocatalyst for asymmetric reduction of 4′-methoxyacetophenone (MOAP) to enantiopure (S)-1-(4-methoxyphenyl)ethanol {(S)-MOPE}. Despite the improved efficiency of the reaction with immobilized cells compared to free cells, the inhibition of the reaction by substrate and product in monophasic aqueous system proved to be big problem. For high efficient biotransformation, several water-immiscible ionic liquids (ILs) were employed as green solvents to construct ionic liquid-involving biphasic systems. Of the six ILs tested, C4MIM·PF6 exhibited the best biocompatibility with the cells, and consequently the biocatalytic reduction proceeded with the fastest initial reaction rate and the highest maximum substrate conversion in the C4MIM·PF6-based biphasic system. To better understand the bioreduction conducted in the C4MIM·PF6-based biphasic system, various variables that influenced the performance of the reaction were examined. The optimal buffer pH, reaction temperature, volume ratio of buffer to C4MIM·PF6 and substrate concentration were 7.5, 25 °C, 4/1 and 40 mM, respectively. Under the optimal conditions, the initial reaction rate, maximum substrate conversion and product e.e. were 1.6 μmol/h, 95.5% and >99%, respectively. Additionally, the cells still remained above 90% of their original activity in the C4MIM·PF6-based biphasic system, which was much higher than that in the monophasic buffer system (about 25% of their original activity), after being repeatedly used for 8 batches (50 h per batch), indicating that C4MIM·PF6 markedly enhanced the operational stability of the cells.  相似文献   

18.
A comparative study was made of Novozym 435-catalyzed regioselective acylation of 1-beta-D-arabinofuranosylcytosine with vinyl propionate for the preparation of the 5'-O-monoester in eleven co-solvent mixtures and three pure polar solvents. Novozym 435 displayed low or no acylation activity toward 1-beta-D-arabinofuranosylcytosine in pure polar solvents, although those solvents can dissolve the nucleosides well. When a hexane-pyridine co-solvent system was adopted, both the initial rate and the substrate conversion were enhanced markedly. The polarity of co-solvent mixtures had significant effect on the reaction. Among the solvent mixtures investigated, the higher the polarity of the solvent mixture, the lower the initial reaction rate and the substrate conversion. It was also found that the acylation was dependent on the hydrophobic solvent content, the water activity and the reaction temperature. The most suitable co-solvent, initial water activity, and reaction temperature were hexane-pyridine (28:72, v/v), 0.07, and 50 degrees C, respectively. Under these conditions, the initial rate, the substrate conversion and the regioselectivity were as high as 91.1 mM h(-1), >97% and >98%, respectively, after a reaction time of 6 h. Among the reaction mediums examined, the lowest apparent activation energy was achieved with hexane-pyridine (28:72, v/v), in which Novozym 435 also exhibited good thermal stability.  相似文献   

19.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

20.
《Process Biochemistry》2007,42(10):1412-1418
Enantioselective reduction of 1-acetonapthone to S(−)-1-(1-naphthyl) ethanol, a key intermediate for the synthesis of HMG Co-A reductase inhibitor, was successfully carried out using immobilized cells of a newly isolated carbonyl reductase producing yeast strain Candida viswanathii MTCC 5158. Calcium alginate (1.5%, w/v) gave the best immobilization efficiency. Among different organic solvents and ionic liquids tried as reaction media, isopropanol gave the best enantioselectivity with moderate conversion. The immobilized cells (100 mg/ml in 50 mM Tris buffer pH 9) showed best results at a substrate concentration of 0.2 mg/ml at 30 °C. After twelve cycles of reaction, no significant decrease in bioreduction efficiency of the immobilized cells was observed as compared to the free cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号