首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp "core genome", comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence.  相似文献   

2.

Background

It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage.

Methodology/Principal Findings

We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p<1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more “offensive” functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study.

Conclusions/Significance

This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. “Offensive” virulence factors, as opposed to host-interaction factors, may more often be a recently acquired trait (on an evolutionary time scale detected by GI analysis). Newly identified pathogen-associated genes warrant further study. We discuss the implications of these results, which cement the significant role of GIs in the evolution of many pathogens.  相似文献   

3.
Burkholderia pseudomallei is the etiologic agent of the disease melioidosis and is a category B biological threat agent. The genomic sequence of B. pseudomallei K96243 was recently determined, but little is known about the overall genetic diversity of this species. Suppression subtractive hybridization was employed to assess the genetic variability between two distinct clinical isolates of B. pseudomallei, 1026b and K96243. Numerous mobile genetic elements, including a temperate bacteriophage designated phi1026b, were identified among the 1026b-specific suppression subtractive hybridization products. Bacteriophage phi1026b was spontaneously produced by 1026b, and it had a restricted host range, infecting only Burkholderia mallei. It possessed a noncontractile tail, an isometric head, and a linear 54,865-bp genome. The mosaic nature of the phi1026b genome was revealed by comparison with bacteriophage phiE125, a B. mallei-specific bacteriophage produced by Burkholderia thailandensis. The phi1026b genes for DNA packaging, tail morphogenesis, host lysis, integration, and DNA replication were nearly identical to the corresponding genes in phiE125. On the other hand, phi1026b genes involved in head morphogenesis were similar to head morphogenesis genes encoded by Pseudomonas putida and Pseudomonas aeruginosa bacteriophages. Consistent with this observation, immunogold electron microscopy demonstrated that polyclonal antiserum against phiE125 reacted with the tail of phi1026b but not with the head. The results presented here suggest that B. pseudomallei strains are genetically heterogeneous and that bacteriophages are major contributors to the genomic diversity of this species. The bacteriophage characterized in this study may be a useful diagnostic tool for differentiating B. pseudomallei and B. mallei, two closely related biological threat agents.  相似文献   

4.
Genomic islands (GIs) are large chromosomal regions present in a subset of bacterial strains that increase the fitness of the organism under specific conditions. We compared the complete genome sequences of two Vibrio vulnificus strains YJ016 and CMCP6 and identified 14 regions (ranging in size from 14 to 117 kb), which had the characteristics of GIs. Bioinformatic analysis of these 14 GI regions identified the presence of phage-like integrase genes, aberrant GC content and genome signature (dinucleotide frequency) within each GI compared with the core genome indicating that these regions were acquired from an anomalous source. We examined the distribution of the nine GIs from strain YJ016 among 27 V. vulnificus isolates and found that most GIs were absent from the majority of these isolates. The chromosomal insertion sites of three GIs were adjacent to tRNA sites, which contained novel horizontally acquired DNA in all six available sequenced Vibrionaceae genomes. Supplementary information: Supplementary data are available at Bioinformatics online.  相似文献   

5.
Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains.  相似文献   

6.
7.
Acquisition of genomic islands (GIs) plays a central role in the diversification and adaptation of bacteria. Some GIs can be mobilized in trans by integrative and conjugative elements (ICEs) or conjugative plasmids if the GIs carry specific transfer‐related sequences. However, the transfer mechanism of GIs lacking such elements remains largely unexplored. Here, we investigated the transmissibility of a GI found in a coral‐associated marine bacterium. This GI does not carry genes with transfer functions, but it carries four genes required for robust biofilm formation. Notably, this GI is inserted in the integration site for SXT/R391 ICEs. We demonstrated that acquisition of an SXT/R391 ICE results in either a tandem GI/ICE arrangement or the complete displacement of the GI. The GI displacement by the ICE greatly reduces biofilm formation. In contrast, the tandem integration of the ICE with the GI in cis allows the GI to hijack the transfer machinery of the ICE to excise, transfer and re‐integrate into a new host. Collectively, our findings reveal that the integration of an ICE into a GI integration site enables rapid genome dynamics and a new mechanism by which SXT/R391 ICEs can augment genome plasticity.  相似文献   

8.
Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as ‘metabolic islands’, ‘symbiotic islands’, ‘resistance islands’, ‘pathogenicity islands’, etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.  相似文献   

9.
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.  相似文献   

10.
11.
Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.  相似文献   

12.
A Genomic Islands (GI) is a chunk of DNA sequence in a genome whose origin can be traced back to other organisms or viruses. The detection of GIs plays an indispensable role in biomedical research, due to the fact that GIs are highly related to special functionalities such as disease-causing GIs - pathogenicity islands. It is also very important to visualize genomic islands, as well as the supporting features corresponding to the genomic islands in the genome. We have developed a program, Genomic Island Visualization (GIV), which displays the locations of genomic islands in a genome, as well as the corresponding supportive feature information for GIs. GIV was implemented in C++, and was compiled and executed on Linux/Unix operating systems.

Availability

GIV is freely available for non-commercial use at http://www5.esu.edu/cpsc/bioinfo/software/GIV  相似文献   

13.
Zheng X  Zheng H  Lan R  Ye C  Wang Y  Zhang J  Jing H  Chen C  Segura M  Gottschalk M  Xu J 《PloS one》2011,6(3):e17987
Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. Infections in humans have been sporadic worldwide but two severe outbreaks occurred in China in recent years, while infections in pigs are a major problem in the swine industry. Some S. suis strains are more pathogenic than others with 2 sequence types (ST), ST1 and ST7, being well recognized as highly pathogenic. We analyzed 31 isolates from 23 serotypes and 25 STs by NimbleGen tiling microarray using the genome of a high pathogenicity (HP) ST1 strain, GZ1, as reference and a new algorithm to detect gene content difference. The number of genes absent in a strain ranged from 49 to 225 with a total of 632 genes absent in at least one strain, while 1346 genes were found to be invariably present in all strains as the core genome of S. suis, accounting for 68% of the GZ1 genome. The majority of genes are located in chromosomal blocks with two or more contiguous genes. Sixty two blocks are absent in two or more strains and defined as regions of difference (RDs), among which 26 are putative genomic islands (GIs). Clustering and statistical analyses revealed that 8 RDs including 6 putative GIs and 21 genes within these RDs are significantly associated with HP. Three RDs encode known virulence related factors including the extracellular factor, the capsular polysaccharide and a SrtF pilus. The strains were divided into 5 groups based on population genetic analysis of multilocus sequence typing data and the distribution of the RDs among the groups revealed gain and loss of RDs in different groups. Our study elucidated the gene content diversity of S. suis and identified genes that potentially promote HP.  相似文献   

14.
Wiezer A  Merkl R 《Genomics》2005,86(4):462-475
Microbial genomes harbor genomic islands (GIs), genes presumably acquired via horizontal gene transfer (HGT). We compared GIs of hyperthermophilic, thermophilic, mesophilic, and pathogenic/nonpathogenic species and of small and large genomes. The COG database was used to characterize gene-encoded functions. Putative donors were determined to quantify gene flux between superkingdoms. In hyperthermophiles, more than 10% of the genes were on average acquired across the superkingdom border. For thermophiles and particularly mesophiles, we identified a nearly unidirectional export from bacteria to archaea. Additionally, we analyzed GI composition for Escherichia, and pairs of Listeria, Rhizobiales, Methanosarcinaceae, and Thermus thermophilus/Deinococcus radiodurans. For Escherichia and Listeria, the composition of GIs in pathogenic and nonpathogenic species did not differ significantly with respect to encoded COG classes. The analysis of related genomes showed that the composition of GIs cannot be explained with trends of gene content known to depend on genome size.  相似文献   

15.
Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer (GC), peptic ulcer, duodenal ulcer (DU) etc. A novel similarity score (Sm)-based comparative analysis with GIs of 50 H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin–antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like Cytotoxin-associated gene A (CagA) and vacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and vacuolating toxin A (vacA) virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori-induced disease prognosis.  相似文献   

16.

Background  

Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs.  相似文献   

17.
Clinical presentations of melioidosis, caused by Burkholderia pseudomallei are protean, but the mechanisms underlying development of the different forms of disease remain poorly understood. In murine melioidosis, the level of virulence of B. pseudomallei is important in disease pathogenesis and progression. In this study, we used B. pseudomallei-susceptible BALB/c mice to determine the virulence of a library of clinical and environmental B. pseudomallei isolates from Australia and Papua New Guinea. Among 42 non-arabinose-assimilating (ara(-)) isolates, LD(50) ranged from 10 to > 10(6) CFU. There were numerous correlations between virulence and disease presentation in patients; however, this was not a consistent observation. Virulence did not correlate with isolate origin (i.e. clinical vs environmental), since numerous ara(-) environmental isolates were highly virulent. The least virulent isolate was a soil isolate from Papua New Guinea, which was arabinose assimilating (ara(+)). Stability of B. pseudomallei virulence was investigated by in vivo passage of isolates through mice and repetitive in vitro subculture. Virulence increased following in vivo exposure in only one of eight isolates tested. In vitro subculture on ferric citrate-containing medium caused attenuation of virulence, and this correlated with changes in colony morphology. Pulsed-field gel electrophoresis and randomly amplified polymorphic DNA typing demonstrated that selected epidemiologically related isolates that had variable clinical outcomes and different in vivo virulence were clonal strains. No molecular changes were observed in isolates after in vivo or in vitro exposure despite changes in virulence. These results indicate that virulence of selected B. pseudomallei isolates is variable, being dependent on factors such as iron bioavailability. They also support the importance of other variables such as inoculum size and host risk factors in determining the clinical severity of melioidosis.  相似文献   

18.
Genomic islands (GIs) and integrative conjugative elements (ICEs) are major players in bacterial evolution since they encode genes involved in adaptive functions of medical or environmental importance. Here we performed the genomic analysis of ICEVchBan8, an unusual ICE found in the genome of a clinical non-toxigenic Vibrio cholerae O37 isolate. ICEVchBan8 shares most of its genetic structure with SXT/R391 ICEs. However, this ICE codes for a different integration/excision module is located at a different insertion site, and part of its genetic cargo shows homology to other pathogenicity islands of V. cholerae.  相似文献   

19.
Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project.  相似文献   

20.
Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. Infections in humans have been sporadic worldwide but two severe outbreaks occurred in China in recent years, while infections in pigs are a major problem in the swine industry. Some S. suis strains are more pathogenic than others with 2 sequence types (ST), ST1 and ST7, being well recognized as highly pathogenic. We analyzed 31 isolates from 23 serotypes and 25 STs by NimbleGen tiling microarray using the genome of a high pathogenicity (HP) ST1 strain, GZ1, as reference and a new algorithm to detect gene content difference. The number of genes absent in a strain ranged from 49 to 225 with a total of 632 genes absent in at least one strain, while 1346 genes were found to be invariably present in all strains as the core genome of S. suis, accounting for 68% of the GZ1 genome. The majority of genes are located in chromosomal blocks with two or more contiguous genes. Sixty two blocks are absent in two or more strains and defined as regions of difference (RDs), among which 26 are putative genomic islands (GIs). Clustering and statistical analyses revealed that 8 RDs including 6 putative GIs and 21 genes within these RDs are significantly associated with HP. Three RDs encode known virulence related factors including the extracellular factor, the capsular polysaccharide and a SrtF pilus. The strains were divided into 5 groups based on population genetic analysis of multilocus sequence typing data and the distribution of the RDs among the groups revealed gain and loss of RDs in different groups. Our study elucidated the gene content diversity of S. suis and identified genes that potentially promote HP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号