首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2,107 adults and performed genome-wide association (GWA) to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6; rs12210538, rs17657775), propionylcarnitine (chromosome 10; rs12779637), 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700), stearoylcarnitine (chromosome 1; rs3811444), and aspartic acid traits (chromosome 8; rs750472). Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine.In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed overlaps with GWAS loci for common diseases. These results form a strong rationale for subsequent functional and disease-related studies.  相似文献   

2.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   

3.
Genomewide association studies (GWAS) aim to identify genetic markers strongly associated with quantitative traits by utilizing linkage disequilibrium (LD) between candidate genes and markers. However, because of LD between nearby genetic markers, the standard GWAS approaches typically detect a number of correlated SNPs covering long genomic regions, making corrections for multiple testing overly conservative. Additionally, the high dimensionality of modern GWAS data poses considerable challenges for GWAS procedures such as permutation tests, which are computationally intensive. We propose a cluster‐based GWAS approach that first divides the genome into many large nonoverlapping windows and uses linkage disequilibrium network analysis in combination with principal component (PC) analysis as dimensional reduction tools to summarize the SNP data to independent PCs within clusters of loci connected by high LD. We then introduce single‐ and multilocus models that can efficiently conduct the association tests on such high‐dimensional data. The methods can be adapted to different model structures and used to analyse samples collected from the wild or from biparental F2 populations, which are commonly used in ecological genetics mapping studies. We demonstrate the performance of our approaches with two publicly available data sets from a plant (Arabidopsis thaliana) and a fish (Pungitius pungitius), as well as with simulated data.  相似文献   

4.
5.
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8×10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8×10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation.  相似文献   

6.
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.  相似文献   

7.
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these unknown metabolites is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.  相似文献   

8.
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions (“Flexible cFDR”). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.  相似文献   

9.
张统雨  朱才业  杜立新  赵福平 《遗传》2017,39(6):491-500
全基因组关联分析(genome-wide association study, GWAS)是一种复杂性状功能基因鉴定的分析策略,已成为挖掘畜禽重要经济性状候选基因的重要手段。随着绵羊和山羊基因组完成和公布,以及不同密度的SNP (single nucleotide polymorphism)芯片的推出并进行商业化推广,不仅大大丰富了羊标记辅助选择可利用的分子标记,而且还为开展重要性状的分子机理的探索提供了重要技术支撑。本文主要针对羊角、羊毛、羊奶、生长发育、肉质、繁殖和疾病等重要性状的GWAS研究所用的群体、主要研究方法和研究结果进行了综述,并对GWAS方法研究现状进行了归纳,以期为进一步利用GWAS进行羊的各种性状的遗传基础研究提供参考。  相似文献   

10.
11.
Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.  相似文献   

12.
Sugarcane is an economically important crop for both food and biofuel industries. Marker-assisted breeding in sugarcane is becoming a reality with the recent development and deployment of markers linked with disease resistance genes. Large linkage disequilibrium in sugarcane makes genome-wide association studies (GWAS) a better alternative to biparental mapping to identify markers associated with agronomic traits. GWAS was conducted on a Louisiana core collection to identify marker-trait associations (MTA) for 11 cane yield and sucrose traits using single nucleotide polymorphism (SNP) and insertion-deletion (Indel) markers. Significant (P < .05) MTAs were identified for all traits where the top ranked markers explained up to 15% of the total phenotypic variation. High correlations (0.732 to 0.999) were observed between sucrose traits and 56 markers were found consistent across multiple traits. These markers following validation in more diverse populations could be used in marker-assisted selection of clones in sugarcane breeding program in Louisiana and elsewhere.  相似文献   

13.
全基因组关联研究的深度分析策略   总被引:1,自引:1,他引:1  
Quan C  Zhang XJ 《遗传》2011,33(2):100-108
2005年至今,全基因组关联研究(Genome-wide association study,GWAS)发现了大量复杂疾病/性状相关变异。近来,科学家们关注的焦点又集中在了如何利用GWAS数据进行深入分析,期待发现更多复杂疾病/性状的易感基因。一些新的策略和方法已经被尝试应用到复杂疾病/性状GWAS的后续研究中,例如深入分析GWAS数据;鉴定新的复杂疾病/性状易感基因/位点;国际合作和Meta分析;易感区域精细定位及测序;多种疾病共同易感基因研究;以及基因型填补,基于通路的关联分析,基因-基因、基因-环境交互作用和上位研究等。这些策略和方法的应用弥补了经典GWAS的一些不足之处,进一步推动了人类对复杂疾病/性状遗传机制的认识。文章对上述研究的策略、方法以及所面临的问题和挑战进行了综述,为读者描绘了GWAS后期工作的一个简要框架。  相似文献   

14.
识别复杂性状和疾病间遗传关联可以提供有用的病因学见解,并有助于确定可能的因果关系的优先级。尽管已有很多工具可以实现复杂性状和疾病间遗传关联,但是某些工具代码可读性差、并且不同工具基于不同的计算机语言、工具间的串联性较差。因此,本研究基于全基因组关联研究(GWAS)数据,提出了SCtool,一个开源、跨平台和用户友好的软件工具。SCtool整合了ldsc, TwosampleMR和MR-BMA三种软件,其主要功能是基于GWAS汇总水平的数据,识别复杂性状和疾病、复杂性状和复杂性状以及疾病与疾病间的遗传相关性并探究其间潜在的因果关联。最后,使用SCtool揭示了全身性铁状态(铁蛋白,血清铁,转铁蛋白,转铁蛋白饱和度)与表观遗传时钟GrimAge之间的遗传关联。  相似文献   

15.
Genome wide association studies (GWAS) identify susceptibility loci for complex traits, but do not identify particular genes of interest. Integration of functional and network information may help in overcoming this limitation and identifying new susceptibility loci. Using GWAS and comorbidity data, we present a network-based approach to predict candidate genes for lipid and lipoprotein traits. We apply a prediction pipeline incorporating interactome, co-expression, and comorbidity data to Global Lipids Genetics Consortium (GLGC) GWAS for four traits of interest, identifying phenotypically coherent modules. These modules provide insights regarding gene involvement in complex phenotypes with multiple susceptibility alleles and low effect sizes. To experimentally test our predictions, we selected four candidate genes and genotyped representative SNPs in the Malmö Diet and Cancer Cardiovascular Cohort. We found significant associations with LDL-C and total-cholesterol levels for a synonymous SNP (rs234706) in the cystathionine beta-synthase (CBS) gene (p = 1 × 10−5 and adjusted-p = 0.013, respectively). Further, liver samples taken from 206 patients revealed that patients with the minor allele of rs234706 had significant dysregulation of CBS (p = 0.04). Despite the known biological role of CBS in lipid metabolism, SNPs within the locus have not yet been identified in GWAS of lipoprotein traits. Thus, the GWAS-based Comorbidity Module (GCM) approach identifies candidate genes missed by GWAS studies, serving as a broadly applicable tool for the investigation of other complex disease phenotypes.Genome wide association studies (GWAS)1 meta-analyses have pinpointed a number of new gene regions contributing to multifactorial diseases. GWAS typically find limited numbers of loci that contribute modestly to complex phenotypes (1), and GLGC meta-analysis of GWAS data has reached the limit of what can be expected (2) without the use of alternative strategies. Given that susceptibility loci for complex traits are unlikely to be randomly distributed in the genome (3), we might expect that the genes associated with a disease will be more likely to be present within the same pathways or functional groupings. In published cases, pathway based GWAS analysis provides an alternative approach to the dissection of complex disease traits (4, 5). In addition, nominal GWAS p values superimposed upon the human molecular network have been used to identify genes associated with multiple sclerosis (6), and the disease association protein–protein link evaluator (DAPPLE) has been used to find significant interactions among proteins encoded by genes in loci associated with other particular diseases (7). Other approaches incorporate heterogeneous molecular data such as linkage studies, cross species conservation measures, gene expression data and protein–protein interactions to better understand GWAS results (8, 9). Integrating molecular network information, pathway analyses, and GWAS data thus holds promise for identifying new susceptibility loci and improving the identification of relevant candidate genes.If a gene is involved in a specific functional process or disease, its molecular network neighbors might also be suspected to have some role (3). In line with this “local” hypothesis, proteins involved in the same disease show a high propensity to interact (10) or cluster together (11) with each other. Interactions between variations in multiple genes, each with strong or modest effects, perturbing the same pathways or modules, may govern complex traits (3, 6). The molecular triangulation (MT) algorithm can be applied to rank seed genes according to their common disease associated neighbors, assigning closer and more connected neighbors higher values (12). Interactions between modestly associated MT genes may be indicative of coherent disease pathways or of genes conferring susceptibility to disease in a coordinated manner. The jActiveModule method (13) combines seed gene scores with biologically relevant interactions to identify network modules where perturbations causative of disease are more likely to reside. Lastly, although not yet implemented at the module level, phenotypic coherence between interacting pairs of genes has been quantified using the combination of molecular level gene to disease relationships and Medicare comorbidity data (14, 15).We believe that GWAS significant SNPs and variants representing potential candidate genes can use the above strategies to reveal more about the missing heritability of complex phenotypes. The most important risk factors for coronary artery disease (CAD) include serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). We present a GWAS-based meta-analysis Comorbid Module (GCM) approach that uses significant (p < 5 × 10−8) GWAS signals for these four traits in the context of molecular networks to prioritize modules of disease-associated candidate genes. We evaluate our approach experimentally through allelic association and genotyping within the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC) for SNPs representing top candidate genes.  相似文献   

16.
Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits.  相似文献   

17.
We report a systems genetic analysis of high density lipoprotein (HDL) levels in an F2 intercross between inbred strains CAST/EiJ and C57BL/6J. We previously showed that there are dramatic differences in HDL metabolism in a cross between these strains, and we now report co-expression network analysis of HDL that integrates global expression data from liver and adipose with relevant metabolic traits. Using data from a total of 293 F2 intercross mice, we constructed weighted gene co-expression networks and identified modules (subnetworks) associated with HDL and clinical traits. These were examined for genes implicated in HDL levels based on large human genome-wide associations studies (GWAS) and examined with respect to conservation between tissue and sexes in a total of 9 data sets. We identify genes that are consistently ranked high by association with HDL across the 9 data sets. We focus in particular on two genes, Wfdc2 and Hdac3, that are located in close proximity to HDL QTL peaks where causal testing indicates that they may affect HDL. Our results provide a rich resource for studies of complex metabolic interactions involving HDL. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

18.
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.  相似文献   

19.
YV Sun 《Human genetics》2012,131(10):1677-1686
Millions of genetic variants have been assessed for their effects on the trait of interest in genome-wide association studies (GWAS). The complex traits are affected by a set of inter-related genes. However, the typical GWAS only examine the association of a single genetic variant at a time. The individual effects of a complex trait are usually small, and the simple sum of these individual effects may not reflect the holistic effect of the genetic system. High-throughput methods enable genomic studies to produce a large amount of data to expand the knowledge base of the biological systems. Biological networks and pathways are built to represent the functional or physical connectivity among genes. Integrated with GWAS data, the network- and pathway-based methods complement the approach of single genetic variant analysis, and may improve the power to identify trait-associated genes. Taking advantage of the biological knowledge, these approaches are valuable to interpret the functional role of the genetic variants, and to further understand the molecular mechanism influencing the traits. The network- and pathway-based methods have demonstrated their utilities, and will be increasingly important to address a number of challenges facing the mainstream GWAS.  相似文献   

20.
全基因组关联分析(GWAS)是动植物复杂性状相关基因定位的常用手段。高通量基因分型技术的应用极大地推动了GWAS的发展。在植物中, 利用GWAS不仅能够以较高的分辨率在全基因组水平鉴定出各种自然群体特定性状相关的基因或区间, 而且可揭示表型变异的遗传架构全景图。目前, 人们利用GWAS分析方法已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)和大豆(Glycine max)等模式植物和重要农作物品系中发掘出与各种性状显著相关的数量性状座位(QTL)及其候选基因位点, 阐明了这些性状的遗传基础, 并为揭示这些性状背后的分子机理提供候选基因, 也为作物高产优质品种的选育提供了理论依据。该文对GWAS的方法、影响因素及数据分析流程进行了详细描述, 以期为相关研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号