首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

2.
Quartet-mapping, a generalization of the likelihood-mapping procedure.   总被引:5,自引:0,他引:5  
Likelihood-mapping (LM) was suggested as a method of displaying the phylogenetic content of an alignment. However, statistical properties of the method have not been studied. Here we analyze the special case of a four-species tree generated under a range of evolution models and compare the results with those of a natural extension of the likelihood-mapping approach, geometry-mapping (GM), which is based on the method of statistical geometry in sequence space. The methods are compared in their abilities to indicate the correct topology. The performance of both methods in detecting the star topology is especially explored. Our results show that LM tends to reject a star tree more often than GM. When assumptions about the evolutionary model of the maximum-likelihood reconstruction are not matched by the true process of evolution, then LM shows a tendency to favor one tree, whereas GM correctly detects the star tree except for very short outer branch lengths with a statistical significance of >0.95 for all models. LM, on the other hand, reconstructs the correct bifurcating tree with a probability of >0.95 for most branch length combinations even under models with varying substitution rates. The parameter domain for which GM recovers the true tree is much smaller. When the exterior branch lengths are larger than a (analytically derived) threshold value depending on the tree shape (rather than the evolutionary model), GM reconstructs a star tree rather than the true tree. We suggest a combined approach of LM and GM for the evaluation of starlike trees. This approach offers the possibility of testing for significant positive interior branch lengths without extensive statistical and computational efforts.  相似文献   

3.
Several stochastic models of character change, when implemented in a maximum likelihood framework, are known to give a correspondence between the maximum parsimony method and the method of maximum likelihood. One such model has an independently estimated branch-length parameter for each site and each branch of the phylogenetic tree. This model--the no-common-mechanism model--has many parameters, and, in fact, the number of parameters increases as fast as the alignment is extended. We take a Bayesian approach to the no-common-mechanism model and place independent gamma prior probability distributions on the branch-length parameters. We are able to analytically integrate over the branch lengths, and this allowed us to implement an efficient Markov chain Monte Carlo method for exploring the space of phylogenetic trees. We were able to reliably estimate the posterior probabilities of clades for phylogenetic trees of up to 500 sequences. However, the Bayesian approach to the problem, at least as implemented here with an independent prior on the length of each branch, does not tame the behavior of the branch-length parameters. The integrated likelihood appears to be a simple rescaling of the parsimony score for a tree, and the marginal posterior probability distribution of the length of a branch is dependent upon how the maximum parsimony method reconstructs the characters at the interior nodes of the tree. The method we describe, however, is of potential importance in the analysis of morphological character data and also for improving the behavior of Markov chain Monte Carlo methods implemented for models in which sites share a common branch-length parameter.  相似文献   

4.

Background  

Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE) of the species tree (topology, branch lengths, and population sizes) from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE) of species trees, with branch lengths of the species tree in coalescent units.  相似文献   

5.
Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.  相似文献   

6.
We have investigated the effects of different among-site rate variation models on the estimation of substitution model parameters, branch lengths, topology, and bootstrap proportions under minimum evolution (ME) and maximum likelihood (ML). Specifically, we examined equal rates, invariable sites, gamma-distributed rates, and site-specific rates (SSR) models, using mitochondrial DNA sequence data from three protein-coding genes and one tRNA gene from species of the New Zealand cicada genus Maoricicada. Estimates of topology were relatively insensitive to the substitution model used; however, estimates of bootstrap support, branch lengths, and R-matrices (underlying relative substitution rate matrix) were strongly influenced by the assumptions of the substitution model. We identified one situation where ME and ML tree building became inaccurate when implemented with an inappropriate among-site rate variation model. Despite the fact the SSR models often have a better fit to the data than do invariable sites and gamma rates models, SSR models have some serious weaknesses. First, SSR rate parameters are not comparable across data sets, unlike the proportion of invariable sites or the alpha shape parameter of the gamma distribution. Second, the extreme among-site rate variation within codon positions is problematic for SSR models, which explicitly assume rate homogeneity within each rate class. Third, the SSR models appear to give severe underestimates of R-matrices and branch lengths relative to invariable sites and gamma rates models in this example. We recommend performing phylogenetic analyses under a range of substitution models to test the effects of model assumptions not only on estimates of topology but also on estimates of branch length and nodal support.  相似文献   

7.
We examine the impact of likelihood surface characteristics on phylogenetic inference. Amino acid data sets simulated from topologies with branch length features chosen to represent varying degrees of difficulty for likelihood maximization are analyzed. We present situations where the tree found to achieve the global maximum in likelihood is often not equal to the true tree. We use the program covSEARCH to demonstrate how the use of adaptively sized pools of candidate trees that are updated using confidence tests results in solution sets that are highly likely to contain the true tree. This approach requires more computation than traditional maximum likelihood methods, hence covSEARCH is best suited to small to medium-sized alignments or large alignments with some constrained nodes. The majority rule consensus tree computed from the confidence sets also proves to be different from the generating topology. Although low phylogenetic signal in the input alignment can result in large confidence sets of trees, some biological information can still be obtained based on nodes that exhibit high support within the confidence set. Two real data examples are analyzed: mammal mitochondrial proteins and a small tubulin alignment. We conclude that the technique of confidence set optimization can significantly improve the robustness of phylogenetic inference at a reasonable computational cost. Additionally, when either very short internal branches or very long terminal branches are present, confident resolution of specific bipartitions or subtrees, rather than whole-tree phylogenies, may be the most realistic goal for phylogenetic methods. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

8.
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals—each with many genes—splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.  相似文献   

9.
The nucleotide substitution matrix inferred from avian data sets using cytochrome b differs considerably from the models commonly used in phylogenetic analyses. To analyze the possible effects of this particular pattern of change in phylogeny estimation we performed a computer simulation in which we started with a real sequence and used the inferred model of change to produce a tree of 10 species. Maximum parsimony (MP), maximum likelihood (ML), and various distance methods were then used to recover the topology and the branch lengths. We used two kinds of data with varying levels of variation. In addition, we tested with the removal of third positions and different weighting schemes. At low levels of variation, MP was outstanding in recovering the topology (90% correct), while unweighted pair-group method, arithmetic average (UPGMA), regardless of distances used, was poor (40%). At the higher level, most methods had a chance of around 40%-58% of finding the true tree. However, in most cases, the trees found were only slightly wrong, with only one or a few branches misplaced. On the other hand, the use of a "wrong" model had serious effects on the estimation of branch lengths (distances). Although precision was high, accuracy was poor with most methods, giving branch lengths that were biased downward. When seeded with the true distance matrix, Fitch and NJ always found the true tree, while UPGMA frequently failed to do so. The effect of removing third positions was dramatic at low levels of variation, because only one MP program was able to find a true tree at all, albeit rarely, while none of the others ever did so. At higher levels, the situation was better, but still much worse than with the whole data set.  相似文献   

10.
The conditional probability of reconstruction is a measure of the robustness of cladogram internodes and, unlike Bremer support and bootstrapping values, directly gauges probability. The new method compares the three putative branch lengths (the optimal and two alternatives) obtained through branch recalculation after nearest neighbor interchange and recalculation under constraint. With rooted trees, one switches the two free lineages attached at the distal end of an internal branch with the basal lineage. Probabilistic reconstruction of a branch for small data sets (e.g., morphological) is defined as having no contrary support for the two alternative branches and, when sufficient data are available (e.g., molecular studies), as meeting a selected confidence limit in chi-squared analysis. The exact probability that the internal branch is reconstructed is the same as the preselected confidence level met with chi-squared analysis; alternatively, it is a simple calculation of the length of the optimal branch divided by the sum of the lengths of all three putative branches. This new measure of robustness allows calculation of summary probabilities of subclade and tree reconstruction. The measure is conditional on a particular data set and optimization method but may also compare support from conflicting gene trees. Examples are provided by a morphological data set (the bryophyte Didymodon) and a molecular data set (primates).  相似文献   

11.
We examined the effect of increasing the number of sampled amplified fragment length polymorphism (AFLP) bands to reconstruct an accurate and well-supported AFLP-based phylogeny. In silico AFLP was performed using simulated DNA sequences evolving along balanced and unbalanced model trees with recent, uniform and ancient radiations and average branch lengths (from the most internal node to the tip) ranging from 0.02 to 0.05 substitutions per site. Trees were estimated by minimum evolution (ME) and maximum parsimony (MP) methods from both DNA sequences and virtual AFLP fingerprints. The comparison of the true tree with the estimated AFLP trees suggests that moderate numbers of AFLP bands are necessary to recover the correct topology with high bootstrap support values (i.e. >70%). Fewer numbers of bands are necessary for shorter tree lengths and for balanced than for unbalanced tree topologies. However, branch length estimation was rather unreliable and did not improve substantially after a certain number of bands were sampled. These results hold for different levels of genome coverage and number of taxa analysed. In silico AFLP using bacterial genomic DNA sequences recovered a well-supported tree topology that mirrored an empirical phylogeny based on a set of 31 orthologous gene sequences when as few as 263 AFLP bands were scored. These results suggest that AFLPs may be an efficient alternative to traditional DNA sequencing for accurate topology reconstruction of shallow trees when not very short ancestral branches exist.  相似文献   

12.
We conducted a simulation study of the phylogenetic methods UPGMA, neighbor joining, maximum parsimony, and maximum likelihood for a five-taxon tree under a molecular clock. The parameter space included a small region where maximum parsimony is inconsistent, so we tested inconsistency correction for parsimony and distance correction for neighbor joining. As expected, corrected parsimony was consistent. For these data, maximum likelihood with the clock assumption outperformed each of the other methods tested. The distance-based methods performed marginally better than did maximum parsimony and maximum likelihood without the clock assumption. Data correction was generally detrimental to accuracy, especially for short sequence lengths. We identified another region of the parameter space where, although consistent for a given method, some incorrect trees were each selected with up to twice the frequency of the correct (generating) tree for sequences of bounded length. These incorrect trees are those where the outgroup has been incorrectly placed. In addition to this problem, the placement of the outgroup sequence can have a confounding effect on the ingroup tree, whereby the ingroup is correct when using the ingroup sequences alone, but with the inclusion of the outgroup the ingroup tree becomes incorrect.  相似文献   

13.
Yang Z 《Systematic biology》1998,47(1):125-133
The effect of the evolutionary rate of a gene on the accuracy of phylogeny reconstruction was examined by computer stimulation. The evolutionary rate is measured by the tree length, that is, the expected total number of nucleotide substitutions per site on the phylogeny. DNA sequence data were simulated using both fixed trees with specified branch lengths and random trees with branch lengths generated from a model of cladogenesis. The parsimony and likelihood methods were used for phylogeny reconstruction, and the proportion of correctly recovered branch partitions by each method was estimated. Phylogenetic methods including parsimony appear quite tolerant of multiple substitutions at the same site. The optimum levels of sequence divergence were even higher than upper limits previously suggested for saturation of substitutions, indicating that the problem of saturation may have been exaggerated. Instead, the lack of information at low levels of divergence should be seriously considered in evaluation of a gene's phylogenetic utility, especially when the gene sequence is short. The performance of parsimony, relative to that of likelihood, does not necessarily decrease with the increase of the evolutionary rate.  相似文献   

14.
In popular use of Bayesian phylogenetics, a default branch-length prior is almost universally applied without knowing how a different prior would have affected the outcome. We performed Bayesian and maximum likelihood (ML) inference of phylogeny based on empirical nucleotide sequence data from a family of lichenized ascomycetes, the Psoraceae, the morphological delimitation of which has been controversial. We specifically assessed the influence of the combination of Bayesian branch-length prior and likelihood model on the properties of the Markov chain Monte Carlo tree sample, including node support, branch lengths, and taxon stability. Data included two regions of the mitochondrial ribosomal RNA gene, the internal transcribed spacer region of the nuclear ribosomal RNA gene, and the protein-coding largest subunit of RNA polymerase II. Data partitioning was performed using Bayes' factors, whereas the best-fitting model of each partition was selected using the Bayesian information criterion (BIC). Given the data and model, short Bayesian branch-length priors generate higher numbers of strongly supported nodes as well as short and topologically similar trees sampled from parts of tree space that are largely unexplored by the ML bootstrap. Long branch-length priors generate fewer strongly supported nodes and longer and more dissimilar trees that are sampled mostly from inside the range of tree space sampled by the ML bootstrap. Priors near the ML distribution of branch lengths generate the best marginal likelihood and the highest frequency of "rogue" (unstable) taxa. The branch-length prior was shown to interact with the likelihood model. Trees inferred under complex partitioned models are more affected by the stretching effect of the branch-length prior. Fewer nodes are strongly supported under a complex model given the same branch-length prior. Irrespective of model, internal branches make up a larger proportion of total tree length under the shortest branch-length priors compared with longer priors. Relative effects on branch lengths caused by the branch-length prior can be problematic to downstream phylogenetic comparative methods making use of the branch lengths. Furthermore, given the same branch-length prior, trees are on average more dissimilar under a simple unpartitioned model compared with a more complex partitioned models. The distribution of ML branch lengths was shown to better fit a gamma or Pareto distribution than an exponential one. Model adequacy tests indicate that the best-fitting model selected by the BIC is insufficient for describing data patterns in 5 of 8 partitions. More general substitution models are required to explain the data in three of these partitions, one of which also requires nonstationarity. The two mitochondrial ribosomal RNA gene partitions need heterotachous models. We found no significant correlations between, on the one hand, the amount of ambiguous data or the smallest branch-length distance to another taxon and, on the other hand, the topological stability of individual taxa. Integrating over several exponentially distributed means under the best-fitting model, node support for the family Psoraceae, including Psora, Protoblastenia, and the Micarea sylvicola group, is approximately 0.96. Support for the genus Psora is distinctly lower, but we found no evidence to contradict the current classification.  相似文献   

15.
ABSTRACT: BACKGROUND: A number of software packages are available to generate DNA multiple sequence alignments (MSAs) evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages). RESULTS: We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site), the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. CONCLUSION: The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.  相似文献   

16.
We revisit statistical tests for branches of evolutionary trees reconstructed upon molecular data. A new, fast, approximate likelihood-ratio test (aLRT) for branches is presented here as a competitive alternative to nonparametric bootstrap and Bayesian estimation of branch support. The aLRT is based on the idea of the conventional LRT, with the null hypothesis corresponding to the assumption that the inferred branch has length 0. We show that the LRT statistic is asymptotically distributed as a maximum of three random variables drawn from the chi(0)2 + chi(1)2 distribution. The new aLRT of interior branch uses this distribution for significance testing, but the test statistic is approximated in a slightly conservative but practical way as 2(l1- l2), i.e., double the difference between the maximum log-likelihood values corresponding to the best tree and the second best topological arrangement around the branch of interest. Such a test is fast because the log-likelihood value l2 is computed by optimizing only over the branch of interest and the four adjacent branches, whereas other parameters are fixed at their optimal values corresponding to the best ML tree. The performance of the new test was studied on simulated 4-, 12-, and 100-taxon data sets with sequences of different lengths. The aLRT is shown to be accurate, powerful, and robust to certain violations of model assumptions. The aLRT is implemented within the algorithm used by the recent fast maximum likelihood tree estimation program PHYML (Guindon and Gascuel, 2003).  相似文献   

17.
Recent studies have observed that Bayesian analyses of sequence data sets using the program MrBayes sometimes generate extremely large branch lengths, with posterior credibility intervals for the tree length (sum of branch lengths) excluding the maximum likelihood estimates. Suggested explanations for this phenomenon include the existence of multiple local peaks in the posterior, lack of convergence of the chain in the tail of the posterior, mixing problems, and misspecified priors on branch lengths. Here, we analyze the behavior of Bayesian Markov chain Monte Carlo algorithms when the chain is in the tail of the posterior distribution and note that all these phenomena can occur. In Bayesian phylogenetics, the likelihood function approaches a constant instead of zero when the branch lengths increase to infinity. The flat tail of the likelihood can cause poor mixing and undue influence of the prior. We suggest that the main cause of the extreme branch length estimates produced in many Bayesian analyses is the poor choice of a default prior on branch lengths in current Bayesian phylogenetic programs. The default prior in MrBayes assigns independent and identical distributions to branch lengths, imposing strong (and unreasonable) assumptions about the tree length. The problem is exacerbated by the strong correlation between the branch lengths and parameters in models of variable rates among sites or among site partitions. To resolve the problem, we suggest two multivariate priors for the branch lengths (called compound Dirichlet priors) that are fairly diffuse and demonstrate their utility in the special case of branch length estimation on a star phylogeny. Our analysis highlights the need for careful thought in the specification of high-dimensional priors in Bayesian analyses.  相似文献   

18.
Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the "correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology.  相似文献   

19.
Phylogenetic analysis using parsimony and likelihood methods   总被引:1,自引:0,他引:1  
The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981,J. Mol. Evol. 17: 368–376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were allowed to differ between nucleotides or across sites, the probability that MP recovers the true topology, and especially its performance relative to that of the likelihood method, generally deteriorates. As the complexity of the process of nucleotide substitution in real sequences is well recognized, the likelihood method appears preferable to parsimony. However, the development of a statistical methodology for the efficient estimation of the tree topology remains a difficult open problem.  相似文献   

20.
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here, we compare several models for combining different genes for the purpose of evaluating the likelihood of tree topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model), or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes, and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the proportional model represents the most appropriate method for branch length analysis. For all the data sets examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号