首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
2.
3.
4.
5.
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.  相似文献   

6.
7.
Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.  相似文献   

15.
Niemann-Pick C1-like 1 (NPC1L1) is an essential intestinal component of cholesterol absorption. However, little is known about the molecular regulation of intestinal NPC1L1 expression and promoter activity. We demonstrated that human NPC1L1 mRNA expression was significantly decreased by 25-hydroxycholesterol but increased in response to cellular cholesterol depletion achieved by incubation with Mevinolin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) in human intestinal Caco-2 cells. We also showed that a -1741/+56 fragment of the NPC1L1 gene demonstrated high promoter activity in Caco-2 cells that was reduced by 25-hydroxycholesterol and stimulated by cholesterol depletion. Interestingly, we showed that the NPC1L1 promoter is remarkably transactivated by the overexpression of sterol regulatory element (SRE) binding protein (SREBP)-2, suggesting its involvement in the sterol-induced alteration in NPC1L1 promoter activity. Finally, we identified two putative SREs in the human NPC1L1 promoter and established their essential roles in mediating the effects of cholesterol on promoter activity. Our study demonstrated the modulation of human NPC1L1 expression and promoter activity by cholesterol in a SREBP-2-dependent mechanism.  相似文献   

16.
Overexpression of the adipocyte differentiation and determination factor-1 (ADD-1) or sterol regulatory element binding protein-1 (SREBP-1) induces the expression of numerous genes involved in lipid metabolism, including lipoprotein lipase (LPL). Therefore, we investigated whether LPL gene expression is controlled by changes in cellular cholesterol concentration and determined the molecular pathways involved. Cholesterol depletion of culture medium resulted in a significant induction of LPL mRNA in the 3T3-L1 preadipocyte cell line, whereas addition of cholesterol reduced LPL mRNA expression to basal levels. Similar to the expression of the endogenous LPL gene, the activity of the human LPL gene promoter was enhanced by cholesterol depletion in transient transfection assays, whereas addition of cholesterol caused a reversal of its induction. The effect of cholesterol depletion upon the human LPL gene promoter was mimicked by cotransfection of expression constructs encoding the nuclear form of SREBP-1a, -1c (also called ADD-1) and SREBP-2. Bioinformatic analysis demonstrated the presence of 3 potential sterol regulatory elements (SRE) and 3 ADD-1 binding sequences (ABS), also known as E-box motifs. Using a combination of in vitro protein-DNA binding assays and transient transfection assays of reporter constructs containing mutations in each individual site, a sequence element, termed LPL-SRE2 (SRE2), was shown to be the principal site conferring sterol responsiveness upon the LPL promoter. These data furthermore underscore the importance of SRE sites relative to E-boxes in the regulation of LPL gene expression by sterols and demonstrate that sterols contribute to the control of triglyceride metabolism via binding of SREBP to the LPL regulatory sequences.  相似文献   

17.
The peroxisomal ATP binding cassette (ABC) transporter adrenoleukodystrophy-related protein, encoded by ABCD2, displays functional redundancy with the X-linked adrenoleukodystrophy-associated protein, making ABCD2 up-regulation of therapeutic value. Cholesterol lowering activates human ABCD2 in cultured cells. To investigate in vivo regulation by sterols, we first characterized a sterol regulatory element (SRE) in the murine Abcd2 promoter that is directly bound by SRE-binding proteins (SREBPs). Intriguingly, this element overlaps with a direct repeat 4, which serves as binding site for liver X receptor (LXR)/retinoid X receptor heterodimers, suggesting novel cross-talk between SREBP and LXR/retinoid X receptor in gene regulation. Using fasting-refeeding and cholesterol loading, SREBP accessibility to the SRE/direct repeat 4 was tested. Results suggest that adipose Abcd2 is induced by SREBP1c, whereas hepatic Abcd2 expression is down-regulated by concurrent activation of LXRalpha and SREBP1c. In cell culture, SREBP1c-mediated Abcd2 induction is counteracted by ligand-activated LXRalpha. Finally, hepatic Abcd2 expression in LXRalpha,beta-deficient mice is inducible to levels vastly exceeding wild type. Together, we identify LXRalpha as negative modulator of Abcd2, acting through a novel regulatory mechanism involving overlapping SREBP and LXRalpha binding sites.  相似文献   

18.
Although statin therapy is a cornerstone of current low density lipoprotein (LDL)-lowering strategies, there is a need for additional therapies to incrementally lower plasma LDL cholesterol. In this study, we investigated the effect of several methylenedioxyphenol derivatives in regulating LDL cholesterol through induction of LDL receptor (LDLR). INV-403, a modified methylenedioxyphenol derivative, increased LDLR mRNA and protein expression in HepG2 cells in a dose- and time-dependent fashion. These effects were apparent even under conditions of HMG-CoA reductase inhibition. Electrophoresis migration shift assays demonstrated that INV-403 activates SREBP2 but not SREBP1c, with immunoblot analysis showing an increased expression of the mature form of SREBP2. Knockdown of SREBP2 reduced the effect of INV-403 on LDLR expression. The activation of SREBP2 by INV-403 is partly mediated by Akt/GSK3β pathways through inhibition of phosphorylation-dependent degradation by ubiquitin-proteosome pathway. Treatment of C57Bl/6j mice with INV-403 for two weeks increased hepatic SREBP2 levels (mature form) and upregulated LDLR with concomitant lowering of plasma LDL levels. Transient expression of a LDLR promoter-reporter construct, a SRE-mutant LDLR promoter construct, and a SRE-only construct in HepG2 cells revealed an effect predominantly through a SRE-dependent mechanism. INV-403 lowered plasma LDL cholesterol levels through LDLR upregulation. These results indicate a role for small molecule approaches other than statins for lowering LDL cholesterol.  相似文献   

19.
20.
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号