首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
P N Fultz  D Y Kwoh    J Kemper 《Journal of bacteriology》1979,137(3):1253-1262
The supQ newD gene substitution system in Salmonella typhimurium restores leucine prototrophy to leuD mutants by providing the newD gene product which is capable of replacing the missing leuD polypeptide in the isopropylmalate isomerase, a complex of the leuC and leuD gene product. Mutations in the supQ gene are required to make the newD protein available. An Escherichia coli F' factor was constructed which carried supQ- newD+ from S. typhimurium on a P22-specialized transducing genome. This F' pro lac (P22dsupQ394newD) episome was transferred into S. typhimurium strains containing th leuD798-ara deletion; the resulting merodiploid strains had a Leu+ phenotype, indicating that supQ- newD+ is dominant over supQ+ newD+, and eliminating the possibility that the supQ gene codes for a repressor of the newD gene. Furthermore, transfer of the F' pro lac (P22dsupQ39newD) into E. coli leuD deletion strains restored leucine prototrophy, showing that the S. typhimurium newD gene can complment the E. coli leuC gene. Growth rates of the S. typhimurium-E coli hybrid strains indicated that the mutant isopropylmalate isomerase in these strains does not induce a leucine limitation, as it does in S. typhimurium leuD supQ mutants. In vitro activity of the mutant isopropylmalate isomerase was demonstrated; the Km values for alpha-isopropylmalate of both the S. typhimurium leuC-newD isomerase and the S. typhimurium-E. coli hybrid isomerase were as much as 100 times higher than the Km values for alpha-isopropylmalate of the wild-type enzyme, which was 3 x 10(-4) M. Mutagenesis of E. coli leuD deletion strains failed to restore leucine prototrophy, indicating that E. coli does not have genes analogous to the S. typhimurium supQ newD genes, of that, if present, activation of a newD is a rare event or is lethal to the cell.  相似文献   

3.
4.
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and play a role in the pathogenesis of certain invasive bacteria. In this study, we reported for the first time here that Providencia alcalifaciens, a member of the family Enterobacteriaceae, produces a superoxide dismutase (SOD) as a major protein in culture supernatants. This protein was purified by a series of column chromatographic separations. The N-terminal amino acid sequence of the protein was determined to be highly homologous to manganese superoxide dismutase of Escherichia coli or Salmonella reported. The gene (sodA) encoding for SOD of P. alcalifaciens was cloned and sequenced. The sodA-encoded protein has a molecular weight of about 23.5 kDa, and the DNA sequence of P. alcalifaciens sodA gene (627 bp) has about 83% identity to the E. coli SOD gene. We constructed a sodA deletion mutant and its complemented strain of P. alcalifaciens. In J774, a macrophage cell line, the sodA deletion mutant was more susceptible to killing by macrophages than the wildtype strain and its complemented strain. When we injected the mutant strain, its complemented strain and wildtype strain intraperitoneally into DDY strain mice, we found that the sodA deletion mutant proved significantly less virulent while the complemented strain recovered the virulence to the same level of wildtype strain of P. alcalifaciens. These results suggested that manganese superoxide dismutase plays an important role in intracellular survival of P. alcalifaciens.  相似文献   

5.
6.
Lysine metabolism plays an important role in the formation of the insecticidal crystal proteins of Bacillus thuringiensis (Bt). The genes lam, gabD and sucA encode three key enzymes of the lysine metabolic pathway in Bt4.0718. The lam gene mainly affects the cell growth at stable period, negligibly affected sporulation and insecticidal crystal protein (ICP) production. While, the deletion mutant strains of the gabD and sucA genes showed that the growth, sporulation and crystal protein formation were inhibited, cells became slender, and insecticidal activity was significantly reduced. iTRAQ proteomics and qRT-PCR used to analyse the differentially expressed protein (DEP) between the two mutant strains and the wild type strain. The functions of DEPs were visualized and statistically classified, which affect bacterial growth and metabolism by regulating biological metabolism pathways: the major carbon metabolism pathways, amino acid metabolism, oxidative phosphorylation pathways, nucleic acid metabolism, fatty acid synthesis and peptidoglycan synthesis. The gabD and sucA genes in lysine metabolic pathway are closely related to the sporulation and crystal proteins formation. The effects of DEPs and functional genes on basic cellular metabolic pathways were studied to provide new strategies for the construction of highly virulent insecticidal strains, the targeted transformation of functional genes.  相似文献   

7.
Phagocytic cells form the first line of defense against infections by the human fungal pathogen Candida albicans. Recent in vitro gene expression data suggest that upon phagocytosis by macrophages, C. albicans reprograms its metabolism to convert fatty acids into glucose by inducing the enzymes of the glyoxylate cycle and fatty acid beta-oxidation pathway. Here, we asked whether fatty acid beta-oxidation, a metabolic pathway localized to peroxisomes, is essential for fungal virulence by constructing two C. albicans double deletion strains: a pex5Delta/pex5Delta mutant, which is disturbed in the import of most peroxisomal enzymes, and a fox2Delta/fox2Delta mutant, which lacks the second enzyme of the beta-oxidation pathway. Both mutant strains had strongly reduced beta-oxidation activity and, accordingly, were unable to grow on media with fatty acids as a sole carbon source. Surprisingly, only the fox2Delta/fox2Delta mutant, and not the pex5Delta/pex5Delta mutant, displayed strong growth defects on nonfermentable carbon sources other than fatty acids (e.g., acetate, ethanol, or lactate) and showed attenuated virulence in a mouse model for systemic candidiasis. The degree of virulence attenuation of the fox2Delta/fox2Delta mutant was comparable to that of the icl1Delta/icl1Delta mutant, which lacks a functional glyoxylate cycle and also fails to grow on nonfermentable carbon sources. Together, our data suggest that peroxisomal fatty acid beta-oxidation is not essential for virulence of C. albicans, implying that the attenuated virulence of the fox2Delta/fox2Delta mutant is largely due to a dysfunctional glyoxylate cycle.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The CiaR/H two-component system is involved in regulating virulence and competence in Streptococcus pneumoniae. The system is known to regulate many genes, including that for high-temperature requirement A (HtrA). This gene has been implicated in the ability of the pneumococcus to colonize the nasopharynx of infant rats. We reported previously that deletion of the gene for HtrA made the pneumococcal strains much less virulent in mouse models, less able to grow at higher temperatures, and more sensitive to oxidative stress. In this report, we show that the growth phenotype as well as sensitivity to oxidative stress of Delta ciaR mutant was very similar to that of a Delta htrA mutant and that the expression of the HtrA protein was reduced in a ciaR-null mutant. Both the in vitro phenotype and the reduced virulence of Delta ciaR mutant could be restored by increasing the expression of HtrA.  相似文献   

15.
集胞藻PCC6803野生型和其脂酰ACP合酶敲除突变株的自由脂肪酸含量和组成表明膜脂的重构和降解是细胞内自由脂肪酸的来源之一。在这一过程中脂肪酶起到关键性作用。通过基因组数据库检索,发现集胞藻PCC6803基因组中只有一个脂肪酶编码基因sll1969,但是还没有其功能相关的生化证据。为了确定该基因的功能及其在脂肪酸代谢途径中的作用,加深对集胞藻PCC6803脂肪酸代谢途径的了解,文中将sll1969基因在大肠杆菌中过表达和体外纯化,得到重组蛋白Sll1969,并对其酶学性质进行初步分析。在30℃条件下,测得Sll1969以对硝基苯丁酸酯作为底物时的Km和kcat值分别为(1.16±0.01)mmol/L和(332.8±10.0)/min;该脂肪酶的最适反应温度为55℃。通过比较分析sll1969突变株中脂肪酸含量和组成变化,发现sll1969的表达量与细胞自由脂肪酸的产量呈正相关,但Sll1969不是细胞中唯一的脂肪酶。  相似文献   

16.
17.
18.
转录组平台技术及其在代谢工程中的应用   总被引:4,自引:0,他引:4  
组学技术在系统水平上对细胞代谢进行全面的分析,极大地促进了代谢工程的发展和应用。全基因组水平的转录分析可以使研究者更加精确地评估细胞表型,加深对细胞代谢的理解。而且转录组分析也有助于研究者鉴定菌种改良的目标基因,加速对微生物细胞工厂的合理设计及构建。文中介绍了3种主要转录组平台技术的原理,并总结了转录组学在代谢工程领域中应用的最新进展和未来发展趋势。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号