首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Important to the study of reef fish ecology is understanding the degree to which fish community structure varies across space, what factors can account for such variation, and whether these factors are scale dependent. This study examined the structure of reef fish communities across four spatial scales (1, 10 100, and 200 m2) visually censused from seven sites within Tague Bay, St. Croix, U.S. Virgin Islands. Relative differences in the number of individuals and species among sites indicated a pattern that was consistent across spatial scales. Spearmans rank correlation revealed significant positive correlation in site rankings, in terms of species richness, between 1 and 10 m2, and 100 and 200 m2; and for the abundance of individuals between 100 and 200 m2. In order to understand the degree to which quantified habitat variables account for patterns in the abundance of individuals and species, and whether these fish-habitat relationships were consistent regardless of spatial scale, separate canonical correlation analyses were conducted at each scale. Independent of scale, the total number of individuals and species were correlated with specific habitat variables, either negatively (with areas of pavement, sand, no algae, and low structural complexity) or positively (with areas of Amphiroa rigida, Halimeda incrassata, high structural complexity, and diverse algae/seagrass communities). These habitat variables explained 31–81% (at scales of 1–200 m2) of the variation in the number of individuals and species. Similar analyses were also performed on the abundances of the nine most common species, and whether their specific habitat associations were independent of scale. Results indicated that habitat variables explained 19–73% (at scales of 1–200 m2) of the variation in abundances of each species. Unique fish-habitat relationships were observed for each species, and most such relationships were consistent across spatial scales. The structure of reef fish communities of Tague Bay was explained in large part by the composition of coral and algae communities present. Both the spatial variation in community structure and the fish-habitat relationships, at the community and population level, appeared to be largely independent of the spatial scale examined. This suggests that generalizations across Tague Bay are possible. Similar habitat associations reported in the literature are discussed with regard to the possibility for generalizations across regions.  相似文献   

3.
1. Additive partitioning of three measures of diversity (species richness, Shannon's diversity index H and Simpson's diversity D) was used to study the relationship between local and regional diversity of benthic macroinvertebrate communities of boreal lakes (littoral habitats) and streams (riffle habitats) across three spatial scales (sampling sites, ecoregions and biogeographic regions). 2. Alpha (α) and beta (β) diversity are defined as within‐habitat and between‐habitat diversity, respectively. According to the concept of additive partitioning, diversity can be partitioned across multiple spatial scales such that the total (γ) diversity on one spatial scale becomes within‐habitat (α) diversity at the next higher scale. Hence, the total diversity at one scale is determined by the α diversity and the between‐habitat diversity (β) at the next lower scale. Consequently, one of the advantages of additive partitioning is that it is possible to study simultaneously β diversity and the regional‐local species relationship and the scale dependence of α and β components. 3. For both lakes and streams α diversity was low for sites and ecoregions, whereas β diversity was high, indicating that among‐site factors are important in describing the variability among the lakes and streams studied here. 4. Weak, albeit significant, evidence was found for regional and local species saturation patterns. Multiple stepwise regression indicated that local processes might be more important in structuring lake‐littoral and stream‐riffle species assemblages than regional processes. From these results we conclude that environmental heterogeneity may act as an important factor contributing to species coexistence, resulting in the observed saturation patterns. 5. Our study supports the use of additive partitioning for identifying specific patterns of macroinvertebrate diversity on multiple spatial scales and the underlying processes generating these patterns. This information is needed to improve understanding of the relation between patterns and processes affecting (decreasing) trends in aquatic biodiversity.  相似文献   

4.
A long-standing problem in ecology is to understand how the species–abundance distribution (SAD) varies with sampling scale. The problem was first characterized by Preston as the veil line problem. Although theoretical and empirical studies have now shown the nonexistence of the veil line, this problem has generated much interest in scaling biodiversity patterns. However, research on scaling SAD has so far exclusively focused on the relationship between the SAD in a smaller sampling area and a known SAD assumed for a larger area. An unsolved challenge is how one may predict species–abundance distribution in a large area from that of a smaller area. Although upscaling biodiversity patterns (e.g. species–area curve) is a major focus of macroecological research, upscaling of SAD across scale is, with few exceptions, ignored in the literature. Methods that directly predict SAD in a larger area from that of a smaller area have just started being developed. Here we propose a Bayesian method that directly answers this question. Examples using empirical data from tropical forests of Malaysia and Panama are employed to demonstrate the use of the method and to examine its performance with increasing sampling area. The results indicate that only 10-15% of the total census area is needed to adequately predict species abundance distribution of a region. In addition to species abundance distributions, the method also predicts well the regional species richness.  相似文献   

5.
Considerable scientific effort has gone into examining how the spatial structure of habitat influences organism distribution and abundance in both theoretical and applied contexts. An emerging conclusion from these works is that the overall amount of habitat in the landscape matters most for species persistence and that more local attributes of habitat structure such as the size and arrangement of patches is of secondary importance. In this study, we quantify how and when the effects of habitat configuration (patch size and isolation) influence the density of three species of insects (Order: Diptera; Wyeomyia smithii , Metriocnemus knabi , Fletcherimyia fletcheri ) whose larvae are found exclusively in identical habitats (the water-filled leaves of pitcher plants – Sarracenia purpurea ) in a system that is naturally patchy at multiple spatial scales. We illustrate that relationships with configuration exist regardless of the overall amount of habitat in the broader landscape, and that there are distinct changes in the relationship between insect density and habitat configuration across multiple spatial scales. In general, patch size is more important within the movement range of the individual and isolation is important at larger, aggregation scales. Thus we demonstrate that a) both the amount and configuration of habitat are important attributes of species distribution; b) responses to measures of configuration can be scaled to processes such as movement and c) that hierarchical frameworks extending across very broad scales are essential for understanding how species respond to habitat structure and their role in ecosystem function.  相似文献   

6.
Spatial scale is a critical consideration for understanding ecological patterns and controls of ecological processes, yet very little is known about how rates of fundamental ecosystem processes vary across spatial scales. We assessed litter decomposition in stream networks whose inherent hierarchical nature makes them a suitable model system to evaluate variation in decay rates across multiple spatial scales. Our hypotheses were (1) that increasing spatial extent adds significant variability at each hierarchical level, and (2) that stream size is an important source of variability among streams. To test these hypotheses we let litter decompose in four riffles in each of twelve 3rd-order streams evenly distributed across four 4th-order watersheds, and in a second experiment determined variation in decomposition rate along a stream-size gradient ranging from orders 1 to 4. Differences in decay rates between coarse-mesh and fine-mesh litter bags accounted for much of the overall variability in the data sets, and were remarkably consistent across spatial scales and stream sizes. In particular, variation across watersheds was minor. Differences among streams and among riffles were statistically significant, though relatively small, leaving most of the total variance (51%) statistically unexplained. This result suggests that variability was generated mainly within riffles, decreasing successively with increasing scale. A broad range of physical and chemical attributes measured at the study sites explained little of the variance in decomposition rate. This, together with the strong mesh-size effect and greater variability among coarse-mesh bags, suggests that detritivores account, at least partly, for the unexplained variance. These findings contrast with the widespread perception that variability of ecosystem characteristics, including process rates, invariably increases (1) with spatial extent and (2), in stream networks, when analyses encompass headwaters of various size. An important practical implication is that natural variability need not compromise litter decomposition assays as a means of assessing functional ecosystem integrity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
9.
10.
Rodil IF  Compton TJ  Lastra M 《PloS one》2012,7(6):e39609
Exposed sandy beaches are highly dynamic ecosystems where macroinvertebrate species cope with extremely variable environmental conditions. The majority of the beach ecology studies present exposed beaches as physically dominated ecosystems where abiotic factors largely determine the structure and distribution of macrobenthic communities. However, beach species patterns at different scales can be modified by the interaction between different environmental variables, including biotic interactions. In this study, we examined the role of different environmental variables for describing the regional and local scale distributions of common macrobenthic species across 39 beaches along the North coast of Spain. The analyses were carried out using boosted regression trees, a relatively new technique from the field of machine learning. Our study showed that the macroinvertebrate community on exposed beaches is not structured by a single physical factor, but instead by a complex set of drivers including the biotic compound. Thus, at a regional scale the macrobenthic community, in terms of number of species and abundance, was mainly explained by surrogates of food availability, such as chlorophyll a. The results also revealed that the local scale is a feasible way to construct general predictive species-environmental models, since relationships derived from different beaches showed similar responses for most of the species. However, additional information on aspects of beach species distribution can be obtained with large scale models. This study showed that species-environmental models should be validated against changes in spatial extent, and also illustrates the utility of BRTs as a powerful analysis tool for ecology data insight.  相似文献   

11.
The scale‐dependent species abundance distribution (SAD) is fundamental in ecology, but few spatially explicit models of this pattern have thus far been studied. Here we show spatially explicit neutral model predictions for SADs over a wide range of spatial scales, which appear to match empirical patterns qualitatively. We find that the assumption of a log‐series SAD in the metacommunity made by spatially implicit neutral models can be justified with a spatially explicit model in the large area limit. Furthermore, our model predicts that SADs on multiple scales are characterized by a single, compound parameter that represents the ratio of the survey area to the species’ average biogeographic range (which is in turn set by the speciation rate and the dispersal distance). This intriguing prediction is in line with recent empirical evidence for a universal scaling of the species‐area curve. Hence we hypothesize that empirical SAD patterns will show a similar universal scaling for many different taxa and across multiple spatial scales.  相似文献   

12.
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.  相似文献   

13.
14.
1. Using species distribution data from 111 aquifers distributed in nine European regions, we examined the pairwise relationships between local species richness (LSR), dissimilarity in species composition among localities, and regional species richness (RSR). In addition, we quantified the relative contribution of three nested spatial units – aquifers, catchments and regions – to the overall richness of groundwater crustaceans.
2. The average number of species in karst and porous aquifers (LSR) varied significantly among regions and was dependent upon the richness of the regional species pool (RSR). LSR–RSR relationships differed between habitats: species richness in karstic local communities increased linearly with richness of the surrounding region, whereas that of porous local communities levelled off beyond a certain value of RSR.
3. Dissimilarity in species composition among aquifers of a region increased significantly with increasing regional richness because of stronger habitat specialisation and a decrease in the geographic range of species among karst aquifers. Species turnover among karst aquifers was positively related to RSR, whereas this relationship was not significant for porous aquifers.
4. The contribution of a given spatial unit to total richness increased as size of the spatial unit increased, although 72% of the overall richness was attributed to among-region diversity. Differences in community composition between similar habitats in different regions were typically more pronounced than between nearby communities from different habitats.
5. We conclude by calling for biodiversity assessment methods and conservation strategies that explicitly integrate the importance of turnover in community composition and habitat dissimilarity at multiple spatial scales.  相似文献   

15.
Positive density-dependent seed and seedling predation, where herbivores selectively eat seeds or seedlings of common species, is thought to play a major role in creating and maintaining plant community diversity. However, many herbivores and seed predators are known to exhibit preferences for rare foods, which could lead to negative density-dependent predation. In this study, we first demonstrate the occurrence of increased predation of locally rare tree species by a widespread group of insular seed and seedling predators, land crabs. We then build computer simulations based on these empirical data to examine the effects of such predation on diversity patterns. Simulations show that herbivore preferences for locally rare species are likely to drive scale-dependent effects on plant community diversity: at small scales these foraging patterns decrease plant community diversity via the selective consumption of rare plant species, while at the landscape level they should increase diversity, at least for short periods, by promoting clustered local dominance of a variety of species. Finally, we compared observed patterns of plant diversity at the site to those obtained via computer simulations, and found that diversity patterns generated under simulations were highly consistent with observed diversity patterns. We posit that preference for rare species by herbivores may be prevalent in low- or moderate-diversity systems, and that these effects may help explain diversity patterns across different spatial scales in such ecosystems.  相似文献   

16.
We examined the foraging behavior of woodland caribou (Rangifer tarandus caribou) relative to the spatial and temporal heterogeneity of their environment. We assessed (1) whether caribou altered their behavior over time while making trade-offs between forage abundance and accessibility; and (2) whether foraging decisions were consistent across spatial scales (i.e., as scale increased, similar decision criteria were used at each scale). We discuss whether caribou adjusted their behavior to take advantage of changing forage availability through time and space. At the scale of the feeding site (as revealed by discriminant function analyses), caribou in both forested and alpine (above tree-line) environments selected sites where the biomass of particular lichen species was greatest and snow the least deep. Caribou did not select those species with the highest nutritional value (i.e., digestible protein and energy) in either area. Where snow depth, density, and hardness limited access to terrestrial lichens in the forest, caribou foraged instead at those trees with the greatest amount of arboreal lichen. Selection of lichen species and the influence of snow differed across time, indicating that in this system the abundance or accessibility of forage temporally influenced foraging behavior. A path analysis of forest data and multiple regression analysis of alpine data were used to test the hypothesis that variables important at the scale of the feeding site explained foraging effort at the scale of the patch. For forest patches, our hypothesized model reliably explained foraging effort, but not all variables that were statistically important at the scale of the feeding site were significant predictors at the scale of the patch. For alpine patches, our hypothesized model did not explain a statistically significant portion of the variation in the number of feeding sites within the patch, and none of the individual variables from the feeding site remained statistically significant at the patch scale. The incongruity between those variables important at the scale of the feeding site and those important at the patch showed that spatial scale affects the foraging decisions of woodland caribou. At the scale of the landscape, there was a trade-off between forage abundance and accessibility. Relative to the alpine environment, caribou in the forest foraged at feeding sites and patches with greater amounts of less variably distributed lichen, but deeper less variable snow depths. Considering the behavioral plasticity of woodland caribou, there may be no distinct advantage to foraging in one landscape over the other.  相似文献   

17.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

18.

Background

Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach.

Methodology/Principal Findings

We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata.

Conclusions/Significance

The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies.  相似文献   

19.
Interspecific competition has been intensely studied as an organizing force in insect herbivore communities that can be mediated by changes in resource availability. We analyzed patterns of interspecific association of three species of gall-forming insects at shoot length class and shrub levels for Bauhinia brevipes through a null model program. Results show that shoots galled by three species were distributed independently among shoot length classes over 3-years, hence, no evidence of competition for shoots was found. Nevertheless, at the plant level our results suggest that there was a positive association. We found no evidence of any reciprocal negative effect because the density of species did not differ among shoot length classes. We suggest that this lack of pattern was probably due to: (a) host-plant resistance mediating interactions; (b) higher abundance of plant resource available, or (c) free-feeding herbivores mediating interactions by manipulating the resources used by gall-forming species.  相似文献   

20.
Determinants of avian species richness at different spatial scales   总被引:9,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号